Estimates of the dimension $(m,n)$-$\operatorname{dim}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

Dimension $(m,n)$-$\operatorname{dim}$ is estimated by means of the Lebesgue dimension.
@article{VMUMM_2013_4_a0,
     author = {V. V. Fedorchuk},
     title = {Estimates of the dimension $(m,n)$-$\operatorname{dim}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Estimates of the dimension $(m,n)$-$\operatorname{dim}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 3
EP  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/
LA  - ru
ID  - VMUMM_2013_4_a0
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Estimates of the dimension $(m,n)$-$\operatorname{dim}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 3-7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/
%G ru
%F VMUMM_2013_4_a0
V. V. Fedorchuk. Estimates of the dimension $(m,n)$-$\operatorname{dim}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/