Estimates of the dimension $(m,n)$-$\operatorname{dim}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 3-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dimension $(m,n)$-$\operatorname{dim}$ is estimated by means of the Lebesgue dimension.
@article{VMUMM_2013_4_a0,
     author = {V. V. Fedorchuk},
     title = {Estimates of the dimension $(m,n)$-$\operatorname{dim}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Estimates of the dimension $(m,n)$-$\operatorname{dim}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 3
EP  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/
LA  - ru
ID  - VMUMM_2013_4_a0
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Estimates of the dimension $(m,n)$-$\operatorname{dim}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 3-7
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/
%G ru
%F VMUMM_2013_4_a0
V. V. Fedorchuk. Estimates of the dimension $(m,n)$-$\operatorname{dim}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/

[1] Fedorchuk V.V., “$C$-spaces and matrix of infinite-dimensionality”, Topol. Appl., 157:17 (2010), 2622–2634 | DOI | MR

[2] Haver W.E., “A covering property for metric spaces”, Lect. Notes Math., 375, 1974, 108–113 | DOI | MR

[3] Addis D.F., Gresham J.H., “A class of infinite-dimensional spaces. I. Dimension theory and Alexandroff's problem”, Fund. math., 101:3 (1978), 195–205 | DOI | MR

[4] Fedorchuk V.V., “Finite dimensions defined by means of $m$-coverings”, J. Egypt. Math. Soc., 64:4 (2012), 347–360 | MR

[5] Aleksandrov P.S., Pasynkov B.A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[6] Morita K., “On the dimension of product spaces”, Amer. J. Math., 75:2 (1953), 205–223 | DOI | MR