Estimates of the dimension $(m,n)$-$\operatorname{dim}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
Dimension $(m,n)$-$\operatorname{dim}$ is estimated by means of the Lebesgue dimension.
@article{VMUMM_2013_4_a0,
author = {V. V. Fedorchuk},
title = {Estimates of the dimension $(m,n)$-$\operatorname{dim}$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--7},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/}
}
V. V. Fedorchuk. Estimates of the dimension $(m,n)$-$\operatorname{dim}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a0/
[1] Fedorchuk V.V., “$C$-spaces and matrix of infinite-dimensionality”, Topol. Appl., 157:17 (2010), 2622–2634 | DOI | MR
[2] Haver W.E., “A covering property for metric spaces”, Lect. Notes Math., 375, 1974, 108–113 | DOI | MR
[3] Addis D.F., Gresham J.H., “A class of infinite-dimensional spaces. I. Dimension theory and Alexandroff's problem”, Fund. math., 101:3 (1978), 195–205 | DOI | MR
[4] Fedorchuk V.V., “Finite dimensions defined by means of $m$-coverings”, J. Egypt. Math. Soc., 64:4 (2012), 347–360 | MR
[5] Aleksandrov P.S., Pasynkov B.A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[6] Morita K., “On the dimension of product spaces”, Amer. J. Math., 75:2 (1953), 205–223 | DOI | MR