Orders of growth of Shannon functions for circuit complexity over infinite bases
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 55-57
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that any function of one real variable being composition of rational functions with real coefficients, logarithms, and exponents and having an order of growth between $n$ and $2^{O(n^{1/2})}$ is an order of growth of the Shannon function for the circuit complexity over a certain infinite basis.
@article{VMUMM_2013_3_a8,
author = {O. M. Kasim-zade},
title = {Orders of growth of {Shannon} functions for circuit complexity over infinite bases},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {55--57},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/}
}
TY - JOUR AU - O. M. Kasim-zade TI - Orders of growth of Shannon functions for circuit complexity over infinite bases JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2013 SP - 55 EP - 57 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/ LA - ru ID - VMUMM_2013_3_a8 ER -
O. M. Kasim-zade. Orders of growth of Shannon functions for circuit complexity over infinite bases. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/