Orders of growth of Shannon functions for circuit complexity over infinite bases
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 55-57

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any function of one real variable being composition of rational functions with real coefficients, logarithms, and exponents and having an order of growth between $n$ and $2^{O(n^{1/2})}$ is an order of growth of the Shannon function for the circuit complexity over a certain infinite basis.
@article{VMUMM_2013_3_a8,
     author = {O. M. Kasim-zade},
     title = {Orders of growth of {Shannon} functions for circuit complexity over infinite bases},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--57},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/}
}
TY  - JOUR
AU  - O. M. Kasim-zade
TI  - Orders of growth of Shannon functions for circuit complexity over infinite bases
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 55
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/
LA  - ru
ID  - VMUMM_2013_3_a8
ER  - 
%0 Journal Article
%A O. M. Kasim-zade
%T Orders of growth of Shannon functions for circuit complexity over infinite bases
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 55-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/
%G ru
%F VMUMM_2013_3_a8
O. M. Kasim-zade. Orders of growth of Shannon functions for circuit complexity over infinite bases. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a8/