Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 29-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Unbounded reduced Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ are considered. It is proved that if the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementary equivalent, then the groups $A_1$ and $A_2$ are equivalent in the second order logic bounded with the final rank of the basic subgroups of $A_1$ and $A_2$.
@article{VMUMM_2013_3_a3,
author = {M. A. Roizner},
title = {Elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {29--34},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/}
}
TY - JOUR AU - M. A. Roizner TI - Elementary equivalence of automorphism groups of reduced Abelian $p$-groups JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2013 SP - 29 EP - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/ LA - ru ID - VMUMM_2013_3_a3 ER -
M. A. Roizner. Elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/