Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 29-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unbounded reduced Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ are considered. It is proved that if the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementary equivalent, then the groups $A_1$ and $A_2$ are equivalent in the second order logic bounded with the final rank of the basic subgroups of $A_1$ and $A_2$.
@article{VMUMM_2013_3_a3,
     author = {M. A. Roizner},
     title = {Elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/}
}
TY  - JOUR
AU  - M. A. Roizner
TI  - Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 29
EP  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/
LA  - ru
ID  - VMUMM_2013_3_a3
ER  - 
%0 Journal Article
%A M. A. Roizner
%T Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 29-34
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/
%G ru
%F VMUMM_2013_3_a3
M. A. Roizner. Elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/

[1] Maltsev A.I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132

[2] Keisler G., Chen Ch.Ch., Teoriya modelei, Mir, M., 1977 | MR

[3] Beidar C.I., Michalev A.V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131 (1992), 29–35 | DOI | MR

[4] Bunina E.I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad polyami”, Fund. i prikl. matem., 4 (1998), 1–14 | MR

[5] Bunina E.I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad koltsami i telami”, Uspekhi matem. nauk, 53:2 (1998), 137–138 | DOI | MR

[6] Bunina E.I., “Elementarnaya ekvivalentnost grupp Shevalle”, Uspekhi matem. nauk, 56:1 (2001), 157–158 | DOI | MR

[7] Bunina E.I., “Elementarnaya ekvivalentnost grupp Shevalle nad lokalnymi koltsami”, Matem. sb., 201:3 (2010), 3–20 | DOI | MR

[8] Tolstykh V., “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure and Appl. Log., 105 (2000), 103–156 | DOI | MR

[9] Bunina E.I., Mikhalev A.V., “Elementarnye svoistva kategorii modulei nad koltsom, kolets endomorfizmov i grupp avtomorfizmov modulei”, Fund. i prikl. matem., 10:2 (2004), 51–134

[10] Bunina E.I., Mikhalev A.V., “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fund. i prikl. matem., 10:2 (2004), 135–224

[11] Bunina E.I., Roizner M.A., “Elementarnaya ekvivalentnost grupp avtomorfizmov abelevykh $p$-grupp”, Fund. i prikl. matem., 15:7 (2009), 81–112

[12] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974 | MR

[13] Szele T., “On the basic subgroups of abelian $p$-groups”, Acta math. Acad. sci. hung., 5 (1954), 129–141 | DOI | MR

[14] Shelah S., “Interpreting set theory in the endomorphism semi-group of a free algebra or in the category”, Ann. sci. Univ. Clermont., 13 (1976), 1–29 | MR