Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 29-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Unbounded reduced Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ are considered. It is proved that if the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementary equivalent, then the groups $A_1$ and $A_2$ are equivalent in the second order logic bounded with the final rank of the basic subgroups of $A_1$ and $A_2$.
@article{VMUMM_2013_3_a3,
     author = {M. A. Roizner},
     title = {Elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/}
}
TY  - JOUR
AU  - M. A. Roizner
TI  - Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 29
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/
LA  - ru
ID  - VMUMM_2013_3_a3
ER  - 
%0 Journal Article
%A M. A. Roizner
%T Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 29-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/
%G ru
%F VMUMM_2013_3_a3
M. A. Roizner. Elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a3/