Each finite group is a symmetry group of some map (an ``Atom''-bifurcation)
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 21-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Maps are studied, i.e. cell decompositions of closed two-dimensional surfaces, or two-dimensional atoms, which encode bifurcations of Liouville fibrations of nondegenerate integrable Hamiltonian systems. Any finite group $G$ is proved to be the symmetry group of an orientable map (of an atom). Moreover one such a map $X(G)$ is constructed algorithmically. Upper bounds are obtained for the minimal genus M$g(G)$ of an orientable map with the given symmetry group $G,$ and for the minimal number of vertices, edges and sides of such maps.
@article{VMUMM_2013_3_a2,
     author = {E. A. Kudryavtseva and A. T. Fomenko},
     title = {Each finite group is a symmetry group of some map (an {``Atom''-bifurcation)}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--29},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - A. T. Fomenko
TI  - Each finite group is a symmetry group of some map (an ``Atom''-bifurcation)
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 21
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/
LA  - ru
ID  - VMUMM_2013_3_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A A. T. Fomenko
%T Each finite group is a symmetry group of some map (an ``Atom''-bifurcation)
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 21-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/
%G ru
%F VMUMM_2013_3_a2
E. A. Kudryavtseva; A. T. Fomenko. Each finite group is a symmetry group of some map (an ``Atom''-bifurcation). Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 21-29. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/