Each finite group is a symmetry group of some map (an “Atom”-bifurcation)
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 21-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Maps are studied, i.e. cell decompositions of closed two-dimensional surfaces, or two-dimensional atoms, which encode bifurcations of Liouville fibrations of nondegenerate integrable Hamiltonian systems. Any finite group $G$ is proved to be the symmetry group of an orientable map (of an atom). Moreover one such a map $X(G)$ is constructed algorithmically. Upper bounds are obtained for the minimal genus M$g(G)$ of an orientable map with the given symmetry group $G,$ and for the minimal number of vertices, edges and sides of such maps.
@article{VMUMM_2013_3_a2,
     author = {E. A. Kudryavtseva and A. T. Fomenko},
     title = {Each finite group is a symmetry group of some map (an {{\textquotedblleft}Atom{\textquotedblright}-bifurcation)}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--29},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - A. T. Fomenko
TI  - Each finite group is a symmetry group of some map (an “Atom”-bifurcation)
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 21
EP  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/
LA  - ru
ID  - VMUMM_2013_3_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A A. T. Fomenko
%T Each finite group is a symmetry group of some map (an “Atom”-bifurcation)
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 21-29
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/
%G ru
%F VMUMM_2013_3_a2
E. A. Kudryavtseva; A. T. Fomenko. Each finite group is a symmetry group of some map (an “Atom”-bifurcation). Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 21-29. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a2/

[1] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR

[2] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[3] Nguyen T.Z., “Decomposition of nondegenerate singularities of integrable Hamiltonian systems”, Lett. Math. Phys., 33 (1995), 187–193 | DOI | MR

[4] Oshemkov A.A., “Funktsii Morsa na dvumernykh poverkhnostyakh. Kodirovanie osobennostei”, Tr. Matem. in-ta RAN, 205, 1994, 131–140

[5] Bolsinov A.V., Fomenko A.T., “Nekotorye aktualnye nereshennye zadachi po topologii integriruemykh gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 5–23 | MR

[6] Brailov Yu.A., “Algebraicheskie svoistva simmetrii atomov”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 24–40

[7] Brailov Yu.A., Kudryavtseva E.A., “Ustoichivaya topologicheskaya nesopryazhennost gamiltonovykh sistem na dvumernykh poverkhnostyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 1999, no. 2, 20–27 | MR

[8] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR

[9] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Simmetrichnye i neprivodimye abstraktnye mnogogranniki”, Matematika, Sovremennye problemy matematiki i mekhaniki, 3, no. 2, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2009, 58–97

[10] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[11] Cori R., Machi A., “Construction of maps with prescribed automorphism group”, Theor. Comp. Sci., 21 (1982), 91–98 | DOI | MR

[12] Širáň J., Škoviera M., “Orientable and non-orientable maps with given automorphism groups”, Australas. J. Combin., 7 (1993), 47–53 | MR

[13] Fujii K., “A note on finite groups which act freely on closed surfaces. I; II”, Hiroshima Math. J., 5 (1975), 261–267 ; 6 (1976), 457–463 | MR | MR