Utility maximization problem in the case of unbounded endowment
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 10-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem of maximizing expected utility with an utility function finite on $\mathbb{R}_+$ and with an unbounded random endowment in an abstract model of financial market. We formulate a dual problem to the primal one and prove duality relations between them. In addition, we study necessary conditions to the existence of solutions to the primal problem. Finally, we reduce the dual problem to a form more convenient for practice.
@article{VMUMM_2013_3_a1,
     author = {R. V. Khasanov},
     title = {Utility maximization problem in the case of unbounded endowment},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--21},
     year = {2013},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a1/}
}
TY  - JOUR
AU  - R. V. Khasanov
TI  - Utility maximization problem in the case of unbounded endowment
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 10
EP  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a1/
LA  - ru
ID  - VMUMM_2013_3_a1
ER  - 
%0 Journal Article
%A R. V. Khasanov
%T Utility maximization problem in the case of unbounded endowment
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 10-21
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a1/
%G ru
%F VMUMM_2013_3_a1
R. V. Khasanov. Utility maximization problem in the case of unbounded endowment. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 10-21. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a1/

[1] Kramkov D.O., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR

[2] Cvitanic J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance and Stochastics, 5:2 (2001), 259–272 | DOI | MR

[3] Schachermayer W., “Optimal investment in incomplete markets when wealth may become negative”, Ann. Appl. Probab., 11:3 (2001), 694–734 | DOI | MR

[4] Owen M.P., Zitkovic G., “Optimal investment with an unbounded random endowment and utility-based pricing”, Math. Finance, 19:1 (2009), 129–159 | DOI | MR

[5] Biagini S., Frittelli M., Grasselli M., “Indifference price with general semimartingales”, Math. Finance, 21:3 (2011), 423–446 | DOI | MR

[6] Hugonnier J., Kramkov D.O., “Optimal investment with random endowments in incomplete markets”, Ann. Appl. Probab., 14:2 (2004), 845–864 | DOI | MR

[7] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR

[8] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Fizmatlit, M., 2005 | MR

[9] Guschin A.A., “O rasshirenii ponyatiya $f$-divergentsii”, Teoriya veroyatn. i ee primen., 52:3 (2007), 468–489 | DOI | MR

[10] Rockafellar R.T., “Extension of Fenchel's duality theorem for convex functions”, Duke Math. J., 33:1 (1966), 81–89 | DOI | MR

[11] Khasanov R.V., “Maksimizatsiya poleznosti so sluchainym vkladom: novaya postanovka dvoistvennoi zadachi”, Obozrenie prikl. i promyshl. matem., 18:1 (2011), 96–97

[12] Rockafellar R.T., Wets R.J.-B., Variational analysis, Grundlehren Math. Wiss., 317, 1997 | MR

[13] Rockafellar R.T., “Integrals which are convex functionals II”, Pacif. J. Math., 39:2 (1971), 439–469 | DOI | MR