Certain properties of Ces\`aro derivatives of higher orders
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a function with Cesàro $C_2$-derivative greater than $-\infty$ everywhere on a segment is not necessarily VBG. We also construct a function having a finite approximate derivative almost everywhere on a segment, but its $C_2$-derivative is equal to $+\infty$ almost everywhere.
@article{VMUMM_2013_3_a0,
     author = {A. V. Dergachev},
     title = {Certain properties of {Ces\`aro} derivatives of higher orders},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a0/}
}
TY  - JOUR
AU  - A. V. Dergachev
TI  - Certain properties of Ces\`aro derivatives of higher orders
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 3
EP  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a0/
LA  - ru
ID  - VMUMM_2013_3_a0
ER  - 
%0 Journal Article
%A A. V. Dergachev
%T Certain properties of Ces\`aro derivatives of higher orders
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 3-10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a0/
%G ru
%F VMUMM_2013_3_a0
A. V. Dergachev. Certain properties of Ces\`aro derivatives of higher orders. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2013), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2013_3_a0/