Dessin d'enfant of valency three and Cayley graphs
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 46-49
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem on duality of the canonical triangulation of a dessin d'enfant and Cayley graph of its extended automorphism group is proven.
@article{VMUMM_2013_2_a9,
author = {K. V. Golubev},
title = {Dessin d'enfant of valency three and {Cayley} graphs},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--49},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a9/}
}
K. V. Golubev. Dessin d'enfant of valency three and Cayley graphs. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 46-49. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a9/
[1] Singerman D., Wolfart J., “Cayley graphs, Cori hypermaps, and dessins d'enfants”, Ars Mathematica Contemporanea, 1 (2008), 144–153 | MR
[2] Zvonkin A.K., Lando S.K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010
[3] Adrianov N.M., Kochetkov Yu.Yu., Suvorov A.D., Shabat G.B., “Gruppy Mate i ploskie derevya”, Fund. i prikl. matem., 1:2 (1995), 377–384 | MR
[4] Knepp E., Ellipticheskie krivye, Faktorial Press, M., 2004
[5] Belyi G.V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 | MR