Functional limit theorem for solutions to Burgers equation with random initial data
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 42-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functional limit theorem is proved for solutions to Burgers' equation corresponding to the sequence of initial potentials determined by specified shot noise random fields.
@article{VMUMM_2013_2_a8,
     author = {V. P. Demichev},
     title = {Functional limit theorem for solutions to {Burgers} equation with random initial data},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--46},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a8/}
}
TY  - JOUR
AU  - V. P. Demichev
TI  - Functional limit theorem for solutions to Burgers equation with random initial data
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 42
EP  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a8/
LA  - ru
ID  - VMUMM_2013_2_a8
ER  - 
%0 Journal Article
%A V. P. Demichev
%T Functional limit theorem for solutions to Burgers equation with random initial data
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 42-46
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a8/
%G ru
%F VMUMM_2013_2_a8
V. P. Demichev. Functional limit theorem for solutions to Burgers equation with random initial data. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 42-46. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a8/

[1] Bulinskii A.V., “CLT for families of integral functionals arising in solving multidimensional Burgers' equation”, Probability Theory and Mathematical Statistics, Proc. 5th Vilnius Conf., v. 1, eds. B. Grigelionis, et al., VSP BV, Utrecht; Mosklas, Vilnius, 1990, 207–216 | MR

[2] Bulinskii A.V., Molchanov S.A., “Asimptoticheskaya gaussovost resheniya uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, Teor. veroyatn. i ee primen., 36:2 (1991), 217–235 | MR

[3] Surgailis D., Woyczynski W.A., “Burgers' equation with nonlocal shot noise data”, J. Appl. Prob., 31A (1994), 351–362 | DOI | MR

[4] Bakhtin Yu.Yu., “Funktsionalnaya tsentralnaya predelnaya teorema dlya resheniya mnogomernogo uravneniya Byurgersa s nachalnymi dannymi, zadannymi assotsiirovannoi sluchainoi meroi”, Vestn. Mosk. un-ta. Matem. Mekhan., 2000, no. 6, 8–15

[5] Bakhtin Yu.Yu., “Funktsionalnaya tsentralnaya predelnaya teorema dlya preobrazovannykh reshenii mnogomernogo uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, Teor. veroyatn. i ee primen., 46:3 (2001), 427–448 | DOI

[6] Daley D.J., Vere-Jones D., An Introduction to the Theory of Point Processes, v. II, General Theory and Structure, Springer, N.J., 2007 | MR

[7] Bulinskii A.V., Shashkin A.P., Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, Fizmatlit, M., 2008 | MR

[8] Bickel P.J., Wichura M.J., “Convergence criteria for multiparameter stochastic processes and some applications”, Ann. Math. Statist., 42:5 (1971), 1656–1670 | DOI | MR

[9] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005