@article{VMUMM_2013_2_a7,
author = {M. E. Lipatov},
title = {On classification of linear cocycles over ergodic automorphisms},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {39--42},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a7/}
}
M. E. Lipatov. On classification of linear cocycles over ergodic automorphisms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 39-42. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a7/
[1] Arnold L., Nguyen Dinh Cong, Oseledets V.I., “Jordan normal form for linear cocycles”, Random Oper. Stochast. Eq., 7:4 (1999), 303–358 | MR
[2] Oseledets V.I., Classification of GL(2,R)-valued cocycles of dynamical systems, Report No 360, Institut für Dynamische Systeme, Universität Bremen, Bremen, 1995
[3] Thieullen Ph., “Ergodic reduction of random products of two-by-two matrices”, J. Anal. Math., 73:1 (1997), 19–64 | DOI | MR
[4] Eberlein P.B., Geometry of nonpositively curved manifolds, The University of Chicago Press, Chicago–London, 1996 | MR
[5] Kapovich M., Leeb B., Millson J., “Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity”, J. Diff. Geom., 81:2 (2009), 297–354 | DOI | MR
[6] Arnold L., Random dynamical systems, Springer-Verlag, Berlin–Heidelberg–N.Y., 1998 | MR
[7] Shafarevich I.R., Osnovy algebraicheskoi geometrii, v. 1, Algebraicheskie mnogoobraziya v proektivnom prostranstve, Nauka, M., 1988 | MR