On classification of linear cocycles over ergodic automorphisms
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 39-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify complex linear cocycles over ergodic automorphisms with the help of the barycenter method. A conjugating random matrix is built in explicit form.
@article{VMUMM_2013_2_a7,
     author = {M. E. Lipatov},
     title = {On classification of linear cocycles over ergodic automorphisms},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--42},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a7/}
}
TY  - JOUR
AU  - M. E. Lipatov
TI  - On classification of linear cocycles over ergodic automorphisms
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 39
EP  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a7/
LA  - ru
ID  - VMUMM_2013_2_a7
ER  - 
%0 Journal Article
%A M. E. Lipatov
%T On classification of linear cocycles over ergodic automorphisms
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 39-42
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a7/
%G ru
%F VMUMM_2013_2_a7
M. E. Lipatov. On classification of linear cocycles over ergodic automorphisms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 39-42. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a7/

[1] Arnold L., Nguyen Dinh Cong, Oseledets V.I., “Jordan normal form for linear cocycles”, Random Oper. Stochast. Eq., 7:4 (1999), 303–358 | MR

[2] Oseledets V.I., Classification of GL(2,R)-valued cocycles of dynamical systems, Report No 360, Institut für Dynamische Systeme, Universität Bremen, Bremen, 1995

[3] Thieullen Ph., “Ergodic reduction of random products of two-by-two matrices”, J. Anal. Math., 73:1 (1997), 19–64 | DOI | MR

[4] Eberlein P.B., Geometry of nonpositively curved manifolds, The University of Chicago Press, Chicago–London, 1996 | MR

[5] Kapovich M., Leeb B., Millson J., “Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity”, J. Diff. Geom., 81:2 (2009), 297–354 | DOI | MR

[6] Arnold L., Random dynamical systems, Springer-Verlag, Berlin–Heidelberg–N.Y., 1998 | MR

[7] Shafarevich I.R., Osnovy algebraicheskoi geometrii, v. 1, Algebraicheskie mnogoobraziya v proektivnom prostranstve, Nauka, M., 1988 | MR