One-channel system with unreliable server and different service times
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 12-17
Cet article a éte moissonné depuis la source Math-Net.Ru
An $M|GI|1|\infty$ queueing system is considered with an unreliable server and customer service times dependent on the system state. The ergodicity condition and generating function are found in the stationary mode.
@article{VMUMM_2013_2_a2,
author = {A. V. Tkachenko},
title = {One-channel system with unreliable server and different service times},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {12--17},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a2/}
}
A. V. Tkachenko. One-channel system with unreliable server and different service times. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 12-17. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a2/
[1] Gaver D.P.Jr., “A waiting line with interrupted service, including priorities”, J. Roy. Statist. Soc., B24 (1962), 73–90 | MR
[2] Maryanovich T.P., “Odnolineinaya sistema massovogo obsluzhivaniya s nenadezhnym priborom”, Ukr. matem. zhurn., 14:4 (1962), 417–422 | MR
[3] Gnedenko B.V., Kovalenko I.N., Vvedenie v teoriyu massovogo obsluzhivaniya, 5-e izd., URSS, M., 2007 | MR
[4] Ushakov I.A., Nadezhnost tekhnicheskikh sistem, Radio i svyaz, M., 1985
[5] Smith W.L., “Regenerative stochastic processes”, J. Roy. Statist. Soc., 232 (1955), 6–31 | MR
[6] Sevastyanov B.A., “Formula Erlanga v telefonii pri proizvolnom zakone raspredeleniya dlitelnosti razgovora”, 3-i Vsesoyuz. matem. s'ezd, AN SSSR, M., 1956, 58–70