@article{VMUMM_2013_2_a14,
author = {K. A. Skoptsov and S. V. Sheshenin},
title = {An asymptotic method for deriving the equations of the {Reissner{\textendash}Mindlin} plate theory},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {65--67},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a14/}
}
TY - JOUR AU - K. A. Skoptsov AU - S. V. Sheshenin TI - An asymptotic method for deriving the equations of the Reissner–Mindlin plate theory JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2013 SP - 65 EP - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a14/ LA - ru ID - VMUMM_2013_2_a14 ER -
%0 Journal Article %A K. A. Skoptsov %A S. V. Sheshenin %T An asymptotic method for deriving the equations of the Reissner–Mindlin plate theory %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2013 %P 65-67 %N 2 %U http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a14/ %G ru %F VMUMM_2013_2_a14
K. A. Skoptsov; S. V. Sheshenin. An asymptotic method for deriving the equations of the Reissner–Mindlin plate theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 65-67. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a14/
[1] Ilyushin A.A., Lenskii V.S., Soprotivlenie materialov, FIZMATGIZ, M., 1959
[2] Kohn R.V., Vogelius M., “A new model for thin plates with rapidly varying thickness”, Int. J. Solids and Struct., 20:4 (1984), 333–350 | DOI | MR
[3] Bakhvalov N.S., Panasenko G.P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR
[4] Pobedrya B.E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984
[5] Sheshenin S.V., “Asimptoticheskii analiz periodicheskikh v plane plastin”, Izv. RAN. Mekhan. tverdogo tela, 2006, no. 6, 71–79
[6] Sheshenin S.V., “Primenenie metoda osredneniya k plastinam, periodicheskim v plane”, Vestn. Mosk. un-ta. Matem. Mekhan., 2006, no. 1, 47–51 | MR
[7] Mindlin R.D., “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates”, ASME J. Appl. Mech., 18 (1951), 31–38
[8] Reissner E., “The effect of transverse shear deformation on the bending of elastic plates”, ASME J. Appl. Mech., 12 (1945), A68–A77 | MR