Uniformity of a certain systems of functions of many-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 61-64

Voir la notice de l'article provenant de la source Math-Net.Ru

For any finite system $A$ of functions of many-valued logic taking values in the set $\{0,1\}$ such that a projection of $A$ generates the class of all monotone boolean functions, it is prooved that there exists constants $c$ and $d$ such that for an arbitrary function $f\in [A]$ the depth $D(f)$ and the complexity $L(f)$ of $f$ in the class of formulas over $A$ satisfy the relation $D(f)\leq c\log_2 L(f)+d$.
@article{VMUMM_2013_2_a13,
     author = {P. B. Tarasov},
     title = {Uniformity of a certain systems of functions of many-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--64},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a13/}
}
TY  - JOUR
AU  - P. B. Tarasov
TI  - Uniformity of a certain systems of functions of many-valued logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 61
EP  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a13/
LA  - ru
ID  - VMUMM_2013_2_a13
ER  - 
%0 Journal Article
%A P. B. Tarasov
%T Uniformity of a certain systems of functions of many-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 61-64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a13/
%G ru
%F VMUMM_2013_2_a13
P. B. Tarasov. Uniformity of a certain systems of functions of many-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 61-64. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a13/