Uniformity of a certain systems of functions of many-valued logic
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 61-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For any finite system $A$ of functions of many-valued logic taking values in the set $\{0,1\}$ such that a projection of $A$ generates the class of all monotone boolean functions, it is prooved that there exists constants $c$ and $d$ such that for an arbitrary function $f\in [A]$ the depth $D(f)$ and the complexity $L(f)$ of $f$ in the class of formulas over $A$ satisfy the relation $D(f)\leq c\log_2 L(f)+d$.
			
            
            
            
          
        
      @article{VMUMM_2013_2_a13,
     author = {P. B. Tarasov},
     title = {Uniformity of a certain systems of functions of many-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--64},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a13/}
}
                      
                      
                    P. B. Tarasov. Uniformity of a certain systems of functions of many-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 61-64. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a13/
