Boundedness of normal harmonic functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 57-61

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundedness of normal holomorphic functions determined in a unit circle is considered in the paper under some conditions imposed on sequences of points lying in this unit circle. An important problem on the boundedness of normal holomorphic functions was studied by V. I. Gavrilov.
@article{VMUMM_2013_2_a12,
     author = {S. L. Berberian},
     title = {Boundedness of normal harmonic functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--61},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a12/}
}
TY  - JOUR
AU  - S. L. Berberian
TI  - Boundedness of normal harmonic functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 57
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a12/
LA  - ru
ID  - VMUMM_2013_2_a12
ER  - 
%0 Journal Article
%A S. L. Berberian
%T Boundedness of normal harmonic functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 57-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a12/
%G ru
%F VMUMM_2013_2_a12
S. L. Berberian. Boundedness of normal harmonic functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a12/