A simple proof of the “geometric fractional monodromy theorem”
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 53-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a simple proof of the “Geometric fractional monodromy theorem” (Broer–Efstathiou–Lukina 2010). The fractional monodromy of a Liouville integrable Hamiltonian system over a loop $\gamma\subset \mathbb{R}^2$ is a generalization of the classic monodromy to the case when the Liouville foliation has singularities over $\gamma$. The “Geometric fractional monodromy theorem” finds, up to an integral parameter, the fractional monodromy of systems similar to the $1:(-2)$ resonance system. A handy equivalent definition of fractional monodromy is presented in terms of homology groups for our proof.
@article{VMUMM_2013_2_a11,
     author = {D. I. Tonkonog},
     title = {A simple proof of the {\textquotedblleft}geometric fractional monodromy theorem{\textquotedblright}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--57},
     year = {2013},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a11/}
}
TY  - JOUR
AU  - D. I. Tonkonog
TI  - A simple proof of the “geometric fractional monodromy theorem”
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 53
EP  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a11/
LA  - ru
ID  - VMUMM_2013_2_a11
ER  - 
%0 Journal Article
%A D. I. Tonkonog
%T A simple proof of the “geometric fractional monodromy theorem”
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 53-57
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a11/
%G ru
%F VMUMM_2013_2_a11
D. I. Tonkonog. A simple proof of the “geometric fractional monodromy theorem”. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a11/

[1] Duistermaat J.J., “On global action angle coordinates”, Communs Pure and Appl. Math., 33 (1980), 687–706 | DOI | MR

[2] Efstathiou K., Metamorphoses of Hamiltonian systems with symmetries, Lect. Notes Math., Springer-Verlag, Berlin–Heidelberg, 2005 | DOI | MR

[3] Nekhoroshev N., Sadovskii D., Zhilinskii B., “Fractional Hamiltonian monodromy”, Ann. Henri Poincaré, 7 (2006), 1099–1211 | DOI | MR

[4] Nekhoroshev N., “Fractional monodromy in the case of arbitrary resonances”, Sbornik Math., 198:3 (2007), 91–136 | DOI | MR

[5] Sadovskii D., Zhilinskii B., “Quantum monodromy, its generalizations and molecular manifestations”, Mol. Phys., 104 (2006), 2595–2615 | DOI | MR

[6] Broer H., Efstathiou K., Lukina O., “A geometric fractional monodromy theorem”, Discrete and continuous dynamical systems, 3:4 (2010), 517–532 | DOI | MR

[7] Bolsinov A.V., Fomenko A.T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman and Hall/CRC, Boca Raton, Florida, 2004 | MR

[8] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287 (1986), 1071–1075

[9] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR

[10] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407