@article{VMUMM_2013_2_a11,
author = {D. I. Tonkonog},
title = {A simple proof of the {\textquotedblleft}geometric fractional monodromy theorem{\textquotedblright}},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {53--57},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a11/}
}
D. I. Tonkonog. A simple proof of the “geometric fractional monodromy theorem”. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2013), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2013_2_a11/
[1] Duistermaat J.J., “On global action angle coordinates”, Communs Pure and Appl. Math., 33 (1980), 687–706 | DOI | MR
[2] Efstathiou K., Metamorphoses of Hamiltonian systems with symmetries, Lect. Notes Math., Springer-Verlag, Berlin–Heidelberg, 2005 | DOI | MR
[3] Nekhoroshev N., Sadovskii D., Zhilinskii B., “Fractional Hamiltonian monodromy”, Ann. Henri Poincaré, 7 (2006), 1099–1211 | DOI | MR
[4] Nekhoroshev N., “Fractional monodromy in the case of arbitrary resonances”, Sbornik Math., 198:3 (2007), 91–136 | DOI | MR
[5] Sadovskii D., Zhilinskii B., “Quantum monodromy, its generalizations and molecular manifestations”, Mol. Phys., 104 (2006), 2595–2615 | DOI | MR
[6] Broer H., Efstathiou K., Lukina O., “A geometric fractional monodromy theorem”, Discrete and continuous dynamical systems, 3:4 (2010), 517–532 | DOI | MR
[7] Bolsinov A.V., Fomenko A.T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman and Hall/CRC, Boca Raton, Florida, 2004 | MR
[8] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287 (1986), 1071–1075
[9] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR
[10] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407