Some properties of $P$-sets of finite-automaton functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 51-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classes of deterministic finite functions are considered in the paper and each state of those functions realizes a function from some closed class $D$ of $k$-valued logic ($P$-sets). It is proved that there exists continuum of precomplete classes $C$ containing an arbitrary $P$-set. The problem of existence of a completeness criterion for systems containing $P$-sets is also considered.
@article{VMUMM_2013_1_a8,
     author = {A. A. Rodin},
     title = {Some properties of $P$-sets of finite-automaton functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--53},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a8/}
}
TY  - JOUR
AU  - A. A. Rodin
TI  - Some properties of $P$-sets of finite-automaton functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 51
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a8/
LA  - ru
ID  - VMUMM_2013_1_a8
ER  - 
%0 Journal Article
%A A. A. Rodin
%T Some properties of $P$-sets of finite-automaton functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 51-53
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a8/
%G ru
%F VMUMM_2013_1_a8
A. A. Rodin. Some properties of $P$-sets of finite-automaton functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 51-53. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a8/

[1] Kudryavtsev V.B., Aleshin S.V., Podkolzin A.S., Vvedenie v teoriyu avtomatov, Nauka, M., 1985 | MR

[2] Kudryavtsev V.B., “O moschnosti mnozhestv predpolnykh mnozhestv nekotoroi funktsionalnoi sistemy, svyazannoi s avtomatami”, Problemy kibernetiki, 13, 1965, 45–74

[3] Marchenkov S.S., “O klassakh Slupetskogo dlya determinirovannykh funktsii”, Diskretn. matem., 10:2 (1998), 37–59

[4] Buevich V.A., “Kriterii polnoty sistem, soderzhaschikh vse odnomestnye ogranichenno determinirovannye funktsii”, Diskretn. matem., 12:4 (2000), 69–97

[5] Yablonskii S.V., Gavrilov G.P., Kudryavtsev V.B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966 | MR

[6] Ugolnikov A.B., Klassy Posta, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2008

[7] Aleshin S.V., “Über ein Vollstänig klits kriterium für Automatenabildungen beruglich der Superposition”, Rostoker Math. Kolloq., 5 (1977), 119–132 | MR