Evolution of motion of a rigid body with a fixed point and an ellipsoidal cavity filled with a viscous fluid
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 44-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inertial motion of a system consisting of a solid with a fixed point and a viscous incompressible liquid filling a spherical or ellipsoidal cavity inside the body is considered. The principal moments of inertia of the system about a fixed point are approximately equal to the principal moments of inertia of an axisymmetric body. The Reynolds number being inversely proportional to the viscosity of the liquid is assumed to be small. For the description of motion, the generalized canonical variables of Ђndoyer, the motion separation method, and the averaging method are used. It is shown that the motion of the system tends to the steady rotation about the axis of the greatest moment of inertia directed along the constant angular momentum vector of the system.
@article{VMUMM_2013_1_a7,
     author = {E. Yu. Baranova and V. G. Vil'ke},
     title = {Evolution of motion of a rigid body with a fixed point and an ellipsoidal cavity filled with a viscous fluid},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {44--50},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a7/}
}
TY  - JOUR
AU  - E. Yu. Baranova
AU  - V. G. Vil'ke
TI  - Evolution of motion of a rigid body with a fixed point and an ellipsoidal cavity filled with a viscous fluid
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 44
EP  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a7/
LA  - ru
ID  - VMUMM_2013_1_a7
ER  - 
%0 Journal Article
%A E. Yu. Baranova
%A V. G. Vil'ke
%T Evolution of motion of a rigid body with a fixed point and an ellipsoidal cavity filled with a viscous fluid
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 44-50
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a7/
%G ru
%F VMUMM_2013_1_a7
E. Yu. Baranova; V. G. Vil'ke. Evolution of motion of a rigid body with a fixed point and an ellipsoidal cavity filled with a viscous fluid. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 44-50. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a7/

[1] Moiseev N.N., Rumyantsev V.V., Dinamika tel s polostyami, soderzhaschimi zhidkost, Nauka, M., 1965

[2] Chernousko F.L., “Dvizhenie tverdogo tela s polostyami, zapolnennymi vyazkoi zhidkostyu, pri malykh chislakh Reinoldsa”, Zhurn. vychisl. matem. i matem. fiz., 5:6 (1965), 1049–1070

[3] Chernousko F.L., Dvizhenie tverdogo tela s polostyami, soderzhaschimi vyazkuyu zhidkost, Nauka, M., 1968

[4] Vilke V.G., “Evolyutsiya dvizheniya simmetrichnogo tverdogo tela so sfericheskoi polostyu, soderzhaschei vyazkuyu zhidkost”, Vestn. Mosk. un-ta. Matem. Mekhan., 1993, no. 1, 71–76 | MR

[5] Vilke V.G., Analiticheskaya mekhanika sistem s beskonechnym chislom stepenei svobody, v. 1, 2, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 1997 | MR

[6] Andoyer H., Cours de mécanique celeste, v. 1, Gauthier–Villars, Paris, 1923; v. 2, 1926

[7] Kibel I.A., Kochin N.E., Roze N.V., Teoreticheskaya gidromekhanika, v. 2, Fizmatgiz, M., 1963

[8] Sadov Yu.A., “Peremennye deistvie–ugol v zadache Eilera–Puanso”, Prikl. matem. i mekhan., 34:5 (1970), 962–964