Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 38-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The adsorption, desorption, impact, and associative heterogeneous recombination rate coefficients of atomic oxygen on the $\alpha$-$\mathrm{Al}_2\mathrm{O}_3$ surface are determined in the $500$$2000$ K temperature range from the first-principle calculations on the interaction of oxygen atom and molecule with alumina clusters. These coefficients are used to calculate recombination coefficients and heat fluxes to the surface under the conditions similar to those of the MESOX test facility.
@article{VMUMM_2013_1_a6,
     author = {A. A. Buchachenko and V. L. Kovalev and A. A. Krupnov},
     title = {Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {38--44},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/}
}
TY  - JOUR
AU  - A. A. Buchachenko
AU  - V. L. Kovalev
AU  - A. A. Krupnov
TI  - Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 38
EP  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/
LA  - ru
ID  - VMUMM_2013_1_a6
ER  - 
%0 Journal Article
%A A. A. Buchachenko
%A V. L. Kovalev
%A A. A. Krupnov
%T Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 38-44
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/
%G ru
%F VMUMM_2013_1_a6
A. A. Buchachenko; V. L. Kovalev; A. A. Krupnov. Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 38-44. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/

[1] Kovalev V.L., Geterogennye kataliticheskie protsessy v aerotermodinamike, Fizmatlit, M., 2002

[2] Kovalev V.L., Kolesnikov A.F., “Eksperimentalnoe i teoreticheskoe modelirovanie geterogennogo kataliza v aerotermokhimii”, Izv. RAN. Mekhan. zhidkosti i gaza, 2005, no. 5, 3–31

[3] Kurotaki T., Construction of catalytic model on SiO$_2$-based surfaces and application to real trajectory, AIAA Paper No 2366, 2000

[4] Deutschmann O., Riedel U., Warnatz J., “Modeling of nitrogen and oxygen recombination on partial catalytic surfaces”, Trans. ASME J. Heat Transfer., 117 (1995), 495–501 | DOI

[5] Kovalev V.L., Krupnov A.A., “Vliyanie obrazovaniya oksida azota v geterogennykh kataliticheskikh reaktsiyakh na teplovye potoki k poverkhnosti mnogorazovykh kosmicheskikh apparatov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2004, no. 1, 30–36

[6] Cacciatore M., Rutigliano M., Billing G.D., “Eley–Rideal and Langmuir–Hinshelwood recombination coefficients for oxygen on silica surfaces”, J. Thermophys. and Heat Transfer., 13:2 (1999), 195–203 | DOI

[7] Rutigliano M., Pieretti A., Cacciatore M., Sanna N., Baronne V., “N atoms recombination on a silica surface: a global theoretical approach”, Surf. Sci., 600 (2006), 4239–4246 | DOI

[8] Kovalev V.L., Pogosbekyan M.Yu., “Modelirovanie geterogennoi rekombinatsii atomov na teplozaschitnykh pokrytiyakh kosmicheskikh apparatov metodami molekulyarnoi dinamiki”, Izv. RAN. Mekhan. zhidkosti i gaza, 2007, no. 4, 176–183

[9] Shiozaki S., Sakiyama Y., Takagi S., Matsumoto Y., Multiscale analysis of heterogeneous catalysis on a silica surface, AIAA Paper No 1250, 2008

[10] Kovalev V.L., Pogosbekyan M.Yu., “Analiz kataliticheskikh svoistv silikonizirovannykh teplozaschitnykh pokrytii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 2, 44–49

[11] Kovalev V.L., Krupnov A.A., Pogosbekyan M.Yu., Sukhanov L.P., “Modelirovanie adsorbtsii atomov kisloroda na poverkhnosti AL$_2$O$_3$ metodom funktsionala plotnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 4, 58–62

[12] Kovalev V.L., Krupnov A.A., Pogosbekyan M.Yu., Sukhanov L.P., “Analiz geterogennoi rekombinatsii atomov kisloroda na okside alyuminiya metodami kvantovoi mekhaniki i klassicheskoi dinamiki”, Izv. RAN. Mekhan. zhidkosti i gaza, 2010, no. 2, 153–160 | MR

[13] Armenise I., Rutigliano M., Cacciatore M., Capitelli M., “Hypersonic boundary layers: oxygen recombination on SiO$_2$ starting from ab initio coefficients”, J. Thermophys. and Heat Transfer., 25:4 (2011), 627–632 | DOI

[14] Balat-Pichelin M., Bedra L., Gerasimova O., Boubert P., “Recombination of atomic oxygen on $\alpha$-Al$_{2}$O$_{3}$ at high temperature under air microwave-induced plasma”, Chem. Phys., 340 (2007), 217–226 | DOI

[15] Hinnemann B., Carter E.A., “Adsorption of Al, O, Hf, Y, Pt, and S atoms on $\alpha$-Al$_{2}$O$_{3}(0001)$”, J. Phys. Chem. C, 111:19 (2007), 7105–7126 | DOI

[16] Gomes J.R.B., Moreira P.R. de, Reinhardt P., Wander A., Searle B.G., Harrison N.M., Illas F., “The structural relaxation of the $\alpha$-Al$_{2}$O$_{3}(0001)$ — an investigation of potential errors”, Chem. Phys. Lett., 341 (2001), 412–418 | DOI

[17] Wittbrodt J.M., Hase W.L., Schlegel H.B., “Ab initio study of the interaction of water with cluster models of the aluminum terminated (0001) $\alpha$-aluminum oxide surface”, J. Phys. Chem. B, 102:34 (1998), 6539–6548 | DOI

[18] Becke A.D., “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, 38:6 (1988), 3098–3100 | DOI

[19] Lee C., Yang W., Parr R.G., “Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37:2 (1988), 785–789 | DOI

[20] Hariharan P.C., Pople J.A., “The influence of polarization functions on molecular orbital hydrogenation energies”, Theor. Chim. Acta, 28:3 (1973), 213–222 | DOI

[21] Girshfelder Dzh., Kertiss Ch., Berd R., Molekulyarnaya teoriya gazov i zhidkostei, IL, M., 1961

[22] Chorkendorf I., Naimantsverdrait Kh., Sovremennyi kataliz i khimicheskaya kinetika, Intellekt, Dolgoprudnyi, 2010

[23] Glesston S., Leidler K., Eiring G., Teoriya absolyutnykh skorostei reaktsii, IL, M., 1948

[24] Ralchenko Yu., Kramida A.E., Reader J., NIST ASD Team (2010), NIST Atomic Spectra Database (ver. 4.0.1), National Institute of Standards and Technology, Gaithersburg, MD, 2011 (2011, February 5) http://physics.nist.gov/asd

[25] Bala-Pishlen M., Kovalev V.L., Kolesnikov A.F., Krupnov A.A., “Vliyanie nepolnoi akkomodatsii energii geterogennoi rekombinatsii na teplovye potoki k teplozaschitnym silikonizirovannym pokrytiyam”, Izv. RAN. Mekhan. zhidkosti i gaza, 2008, no. 5, 181–190