@article{VMUMM_2013_1_a6,
author = {A. A. Buchachenko and V. L. Kovalev and A. A. Krupnov},
title = {Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {38--44},
year = {2013},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/}
}
TY - JOUR
AU - A. A. Buchachenko
AU - V. L. Kovalev
AU - A. A. Krupnov
TI - Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2013
SP - 38
EP - 44
IS - 1
UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/
LA - ru
ID - VMUMM_2013_1_a6
ER -
%0 Journal Article
%A A. A. Buchachenko
%A V. L. Kovalev
%A A. A. Krupnov
%T Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 38-44
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/
%G ru
%F VMUMM_2013_1_a6
A. A. Buchachenko; V. L. Kovalev; A. A. Krupnov. Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 38-44. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a6/
[1] Kovalev V.L., Geterogennye kataliticheskie protsessy v aerotermodinamike, Fizmatlit, M., 2002
[2] Kovalev V.L., Kolesnikov A.F., “Eksperimentalnoe i teoreticheskoe modelirovanie geterogennogo kataliza v aerotermokhimii”, Izv. RAN. Mekhan. zhidkosti i gaza, 2005, no. 5, 3–31
[3] Kurotaki T., Construction of catalytic model on SiO$_2$-based surfaces and application to real trajectory, AIAA Paper No 2366, 2000
[4] Deutschmann O., Riedel U., Warnatz J., “Modeling of nitrogen and oxygen recombination on partial catalytic surfaces”, Trans. ASME J. Heat Transfer., 117 (1995), 495–501 | DOI
[5] Kovalev V.L., Krupnov A.A., “Vliyanie obrazovaniya oksida azota v geterogennykh kataliticheskikh reaktsiyakh na teplovye potoki k poverkhnosti mnogorazovykh kosmicheskikh apparatov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2004, no. 1, 30–36
[6] Cacciatore M., Rutigliano M., Billing G.D., “Eley–Rideal and Langmuir–Hinshelwood recombination coefficients for oxygen on silica surfaces”, J. Thermophys. and Heat Transfer., 13:2 (1999), 195–203 | DOI
[7] Rutigliano M., Pieretti A., Cacciatore M., Sanna N., Baronne V., “N atoms recombination on a silica surface: a global theoretical approach”, Surf. Sci., 600 (2006), 4239–4246 | DOI
[8] Kovalev V.L., Pogosbekyan M.Yu., “Modelirovanie geterogennoi rekombinatsii atomov na teplozaschitnykh pokrytiyakh kosmicheskikh apparatov metodami molekulyarnoi dinamiki”, Izv. RAN. Mekhan. zhidkosti i gaza, 2007, no. 4, 176–183
[9] Shiozaki S., Sakiyama Y., Takagi S., Matsumoto Y., Multiscale analysis of heterogeneous catalysis on a silica surface, AIAA Paper No 1250, 2008
[10] Kovalev V.L., Pogosbekyan M.Yu., “Analiz kataliticheskikh svoistv silikonizirovannykh teplozaschitnykh pokrytii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 2, 44–49
[11] Kovalev V.L., Krupnov A.A., Pogosbekyan M.Yu., Sukhanov L.P., “Modelirovanie adsorbtsii atomov kisloroda na poverkhnosti AL$_2$O$_3$ metodom funktsionala plotnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 4, 58–62
[12] Kovalev V.L., Krupnov A.A., Pogosbekyan M.Yu., Sukhanov L.P., “Analiz geterogennoi rekombinatsii atomov kisloroda na okside alyuminiya metodami kvantovoi mekhaniki i klassicheskoi dinamiki”, Izv. RAN. Mekhan. zhidkosti i gaza, 2010, no. 2, 153–160 | MR
[13] Armenise I., Rutigliano M., Cacciatore M., Capitelli M., “Hypersonic boundary layers: oxygen recombination on SiO$_2$ starting from ab initio coefficients”, J. Thermophys. and Heat Transfer., 25:4 (2011), 627–632 | DOI
[14] Balat-Pichelin M., Bedra L., Gerasimova O., Boubert P., “Recombination of atomic oxygen on $\alpha$-Al$_{2}$O$_{3}$ at high temperature under air microwave-induced plasma”, Chem. Phys., 340 (2007), 217–226 | DOI
[15] Hinnemann B., Carter E.A., “Adsorption of Al, O, Hf, Y, Pt, and S atoms on $\alpha$-Al$_{2}$O$_{3}(0001)$”, J. Phys. Chem. C, 111:19 (2007), 7105–7126 | DOI
[16] Gomes J.R.B., Moreira P.R. de, Reinhardt P., Wander A., Searle B.G., Harrison N.M., Illas F., “The structural relaxation of the $\alpha$-Al$_{2}$O$_{3}(0001)$ — an investigation of potential errors”, Chem. Phys. Lett., 341 (2001), 412–418 | DOI
[17] Wittbrodt J.M., Hase W.L., Schlegel H.B., “Ab initio study of the interaction of water with cluster models of the aluminum terminated (0001) $\alpha$-aluminum oxide surface”, J. Phys. Chem. B, 102:34 (1998), 6539–6548 | DOI
[18] Becke A.D., “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A, 38:6 (1988), 3098–3100 | DOI
[19] Lee C., Yang W., Parr R.G., “Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37:2 (1988), 785–789 | DOI
[20] Hariharan P.C., Pople J.A., “The influence of polarization functions on molecular orbital hydrogenation energies”, Theor. Chim. Acta, 28:3 (1973), 213–222 | DOI
[21] Girshfelder Dzh., Kertiss Ch., Berd R., Molekulyarnaya teoriya gazov i zhidkostei, IL, M., 1961
[22] Chorkendorf I., Naimantsverdrait Kh., Sovremennyi kataliz i khimicheskaya kinetika, Intellekt, Dolgoprudnyi, 2010
[23] Glesston S., Leidler K., Eiring G., Teoriya absolyutnykh skorostei reaktsii, IL, M., 1948
[24] Ralchenko Yu., Kramida A.E., Reader J., NIST ASD Team (2010), NIST Atomic Spectra Database (ver. 4.0.1), National Institute of Standards and Technology, Gaithersburg, MD, 2011 (2011, February 5) http://physics.nist.gov/asd
[25] Bala-Pishlen M., Kovalev V.L., Kolesnikov A.F., Krupnov A.A., “Vliyanie nepolnoi akkomodatsii energii geterogennoi rekombinatsii na teplovye potoki k teplozaschitnym silikonizirovannym pokrytiyam”, Izv. RAN. Mekhan. zhidkosti i gaza, 2008, no. 5, 181–190