Convergence of orthogonal greedy algorithm with errors in projectors
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 21-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of orthogonal greedy algorithm is proposed. This model allows one to consider computational errors and to study the stability of this algorithm with respect to errors in projections onto subspaces. A criterion for the convergence of orthogonal greedy expansion to the expanded element is given in terms of computational errors.
@article{VMUMM_2013_1_a3,
     author = {N. N. Fedotov},
     title = {Convergence of orthogonal greedy algorithm with errors in projectors},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--26},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a3/}
}
TY  - JOUR
AU  - N. N. Fedotov
TI  - Convergence of orthogonal greedy algorithm with errors in projectors
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 21
EP  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a3/
LA  - ru
ID  - VMUMM_2013_1_a3
ER  - 
%0 Journal Article
%A N. N. Fedotov
%T Convergence of orthogonal greedy algorithm with errors in projectors
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 21-26
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a3/
%G ru
%F VMUMM_2013_1_a3
N. N. Fedotov. Convergence of orthogonal greedy algorithm with errors in projectors. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 21-26. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a3/

[1] Friedman J.H., Stueuzle W., “Projection pursuit regression”, J. Amer. Statist. Assoc., 76 (1981), 817–823 | DOI | MR

[2] Jones L.K., “On a conjecture of Huber concerning the convergence of PP-regression”, Ann. Statist., 15 (1987), 880–882 | DOI | MR

[3] Mallat S., Zhang Z., “Matching pursuit with time-frequency dictionaries”, IEEE Trans. Signal Process., 41 (1993), 3397–3415 | DOI | MR

[4] DeVore R.A., Temlyakov V.N., “Some remarks on greedy algorithms”, Adv. Comput. Math., 5 (1996), 173–187 | DOI | MR

[5] Temlyakov V.N., “Weak greedy algorithms”, Adv. Comput. Math., 12 (2000), 213–227 | DOI | MR

[6] Galatenko V.V., Livshits E.D., “Obobschennye priblizhennye slabye zhadnye algoritmy”, Matem. zametki, 78 (2005), 186–201 | DOI

[7] Gribonval R., Nielsen M., “Approximate weak greedy algorithms”, Adv. Comput. Math., 14 (2001), 361–368 | DOI | MR

[8] Galatenko V.V., “Skhodimost slabykh ortogonalnykh zhadnykh priblizhenii”, Mat-ly Voronezh. zimnei matem. shkoly “Sovremennye metody teorii funktsii i smezhnye problemy”, Voronezh, 2011, 62–63

[9] Dubinin V.V., Greedy algorithms and applications, Ph. D. Thesis, Univ. South Carolina, 1997 | MR

[10] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102 (1955), 37–40

[11] Barron A., “Universal approximation bounds for superposition of $n$ sigmoidal functions”, IEEE Trans. Inf. Theory, 39 (1993), 930–945 | DOI | MR