Asymptotics of stationary measure under scaling in stochastic exchange processes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 16-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic properties of an invariant distribution of exchange processes are studied on a two-dimensional lattice with fixed boundary conditions.
@article{VMUMM_2013_1_a2,
     author = {N. Yu. Odnobokov},
     title = {Asymptotics of stationary measure under scaling in stochastic exchange processes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--21},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a2/}
}
TY  - JOUR
AU  - N. Yu. Odnobokov
TI  - Asymptotics of stationary measure under scaling in stochastic exchange processes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 16
EP  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a2/
LA  - ru
ID  - VMUMM_2013_1_a2
ER  - 
%0 Journal Article
%A N. Yu. Odnobokov
%T Asymptotics of stationary measure under scaling in stochastic exchange processes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 16-21
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a2/
%G ru
%F VMUMM_2013_1_a2
N. Yu. Odnobokov. Asymptotics of stationary measure under scaling in stochastic exchange processes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 16-21. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a2/

[1] Malyshev V.A., Manita A.D., “Stokhasticheskaya mikromodel techeniya Kuetta”, Teoriya veroyatn. i ee primen., 53:4 (2008), 798–809 | DOI

[2] Bulinskii A.I., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2004

[3] Liggett T., Markovskie protsessy s lokalnym vzaimodeistviem, Mir, M., 1989 | MR

[4] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[5] Whitt W., “Weak convergence of probability measures on the function space $C[0,\infty)$”, Ann. Math. Statist., 41:3 (1970), 939–944 | DOI | MR

[6] Dynkin E.B., Yushkevich A.A., Teoremy i zadachi o protsessakh Markova, Nauka, M., 1967 | MR

[7] Venttsel A.D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR