The role of divergent terms in the Frank energy of nematic liquid crystals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 69-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The role of the divergent part of the Frank energy in the equilibrium state of nematic liquid crystals is considered. This term is needed to be considered in the boundary conditions only. It is shown that the divergent term plays the same role as Rapini–Papoular surface energy in the case of the boundary surface or the polar angle of director disturbances and leads to the azimuthal deflection of the director. The nematic equilibrium problem is considered in the case of small periodic boundary perturbations.
@article{VMUMM_2013_1_a14,
     author = {A. G. Kalugin},
     title = {The role of divergent terms in the {Frank} energy of nematic liquid crystals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--71},
     year = {2013},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a14/}
}
TY  - JOUR
AU  - A. G. Kalugin
TI  - The role of divergent terms in the Frank energy of nematic liquid crystals
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 69
EP  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a14/
LA  - ru
ID  - VMUMM_2013_1_a14
ER  - 
%0 Journal Article
%A A. G. Kalugin
%T The role of divergent terms in the Frank energy of nematic liquid crystals
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 69-71
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a14/
%G ru
%F VMUMM_2013_1_a14
A. G. Kalugin. The role of divergent terms in the Frank energy of nematic liquid crystals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 69-71. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a14/

[1] De Zhen P., Fizika zhidkikh kristallov, Mir, M., 1977

[2] Papini A., Papoular M., “Distorsion d'une lamelle nematique sous champ magnertique conditions d'ancrage aux parois”, J. Phys. (Paris) Colloq., 30:C4 (1969), 54–58

[3] Blinov L.M., Kats E.I., Sonin A.A., “Fizika poverkhnosti termotropnykh zhidkikh kristallov”, Uspekhi fiz. nauk, 152:3 (1987), 449–477 | DOI

[4] Sonin A.S., Vvedenie v fiziku zhidkikh kristallov, Nauka, M., 1983

[5] Polak R.D., Crawford G.P., Kostival B.C., Doane J.W., Zumer S., “Optical determination of the saddle-splay elastic constant $K_{24}$ in nematic liquid crystals”, Phys. Rev. E, 49:2 (1994), R978–R981 | DOI

[6] Sparavigna A., Lavrentovich O.D., Strigazzi A., “Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals: Threshold analysis”, Phys. Rev. E, 49:2 (1994), 1344–1352 | DOI

[7] Rosso R., Virga E.G., Kralj S., “Local elastic stability for nematic liquid crystals”, Phys. Rev. E, 70 (2004), 011710-1-10 | DOI | MR

[8] Barbero G., Evangelista L.R., Lelidis I., “Spontaneous periodic distortions in nematic liquid crystals: Dependence on the tilt angle”, Phys. Rev. E, 67 (2003), 051708-1-4 | DOI

[9] Atherton T.J., Sambles J.R., “Orientational transition in a nematic liquid crystal at a patterned surface”, Phys. Rev. E, 74 (2006), 022701-1-4 | DOI

[10] Kalugin A.G., Golubyatnikov A.N., “O ravnovesnoi forme kapli nematicheskogo zhidkogo kristalla”, Tr. Matem. in-ta RAN, 223, 1998, 171–177 | MR

[11] Sedov L.I., Mekhanika sploshnykh sred, v. 1, 2, Nauka, M., 1994 | MR

[12] Golubiatnikov A.N., Kalugin A.G., “On short surface waves in nematic liquid crystals”, Mol. Cryst. Liq. Cryst., 366 (2001), 2731–2736 | DOI | MR