Depth of functions of $k$-valued logic in finite bases
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 56-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Realization of functions of $k$-valued logic by circuits is considered over an arbitrary finite complete basis $B$. Asymptotic behaviour of the Shannon function $D_B(n)$ of the circuit depth over $B$ is examined. The value $D_B(n)$ is the minimal depth sufficient to realize every function of $k$-valued logic on $n$ variables by a circuit over $B$. It is shown that for each natural $k\ge2$ and for any finite complete basis $B$ there exists a positive constant $\alpha_B$ such that $D_B(n)\sim\alpha_B n$ for $n\to\infty$.
			
            
            
            
          
        
      @article{VMUMM_2013_1_a10,
     author = {A. V. Kochergin},
     title = {Depth of functions of $k$-valued logic in finite bases},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--59},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a10/}
}
                      
                      
                    A. V. Kochergin. Depth of functions of $k$-valued logic in finite bases. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2013), pp. 56-59. http://geodesic.mathdoc.fr/item/VMUMM_2013_1_a10/
