Two-phase queueing system with unreliable servers under heavy load
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 47-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a two-phase queueing system with a finite number of places in the buffer between phases and unreliable servers. The servers at phases function synchronically. The ergodicity condition is obtained and functioning of the system under heavy traffic assumptions is studied.
@article{VMUMM_2012_6_a9,
     author = {I. V. Rudenko},
     title = {Two-phase queueing system with unreliable servers under heavy load},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--50},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a9/}
}
TY  - JOUR
AU  - I. V. Rudenko
TI  - Two-phase queueing system with unreliable servers under heavy load
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 47
EP  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a9/
LA  - ru
ID  - VMUMM_2012_6_a9
ER  - 
%0 Journal Article
%A I. V. Rudenko
%T Two-phase queueing system with unreliable servers under heavy load
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 47-50
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a9/
%G ru
%F VMUMM_2012_6_a9
I. V. Rudenko. Two-phase queueing system with unreliable servers under heavy load. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 47-50. http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a9/

[1] Gaver D. P., Jr., “A waiting line with interrupted service, including priorities”, J. Roy. Statist. Soc., B24 (1962), 73–90 | MR

[2] Afanaseva L.G., Bulinskaya E.V., “Matematicheskie modeli transportnykh sistem, osnovannye na teorii ocheredei”, Tr. MFTI, 2:4 (2010), 6–21

[3] Gideon R., Pyke R., “MR Modelling of Poisson traffic at intersections having separate turn lanes”, Semi-Markov Models and Applications, Kluwer Academic Publishers, Dordrecht, 1999, 285–312 | DOI | MR

[4] Afanaseva L.G., Bulinskaya E.V., “Nekotorye zadachi dlya potokov vzaimodeistvuyuschikh chastits”, Sovremennye problemy matematiki i mekhaniki, 4, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2009, 55–67

[5] Afanaseva L.G., “Sistemy massovogo obsluzhivaniya s tsiklicheskimi upravlyayuschimi posledovatelnostyami”, Kibernetika i sistemnyi analiz, 1, In-t kibernetiki NAN Ukrainy, 2005, 54–69

[6] Borovkov A.A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 | MR

[7] Afanaseva L.G., Bashtova E.E., “Predelnye teoremy dlya sistem obsluzhivaniya s dvazhdy stokhasticheskim puassonovskim potokom (usloviya vysokoi zagruzki)”, Probl. peredachi inform., 44:4 (2008), 72–91 | MR