Feynman integrals of functionals of exponential form with a polynomial exponent
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 35-38
The concept of Feynman integral in a sense of analytic continuation in the space of complex operators is considered. The existence of the integral is proved and its representation in the form of Gaussian integral is obtained for the case when the dominant term of the integrand is an exponent of polynominal.
@article{VMUMM_2012_6_a6,
author = {A. K. Kravtseva},
title = {Feynman integrals of functionals of exponential form with a polynomial exponent},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--38},
year = {2012},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a6/}
}
A. K. Kravtseva. Feynman integrals of functionals of exponential form with a polynomial exponent. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 35-38. http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a6/
[1] Smolyanov O.G., Shavgulidze E.T., Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR
[2] Smolyanov O.G., Shavgulidze E.T., “Formuly Feinmana dlya reshenii beskonechnomernykh uravnenii Shredingera s polinomialnymi potentsialami”, Dokl. RAN, 390:3 (2003), 321–324 | MR
[3] Smolyanov O.G., Shavgulidze E.T., “Beskonechnomernye uravneniya Shredingera s polinomialnymi potentsialami i integraly Feinmana po traektoriyam”, Dokl. RAN, 408:1 (2006), 28–33 | MR
[4] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR