Bounded strict solar property of strict suns in the space $C(Q)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 16-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The intersection of a sun $M$ in $C(Q)$ with a closed span $\Pi\subset C(Q) $ (in particular, with a closed ball) is shown to be a strict protosun, provided that the natural condition $M\cap\operatorname{int}\Pi\ne\varnothing$ is satisfied. This property is shown to characterize closed spans in $C(Q)$.
@article{VMUMM_2012_6_a2,
     author = {A. R. Alimov},
     title = {Bounded strict solar property of strict suns in the space $C(Q)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--19},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Bounded strict solar property of strict suns in the space $C(Q)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 16
EP  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/
LA  - ru
ID  - VMUMM_2012_6_a2
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Bounded strict solar property of strict suns in the space $C(Q)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 16-19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/
%G ru
%F VMUMM_2012_6_a2
A. R. Alimov. Bounded strict solar property of strict suns in the space $C(Q)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 16-19. http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/