Bounded strict solar property of strict suns in the space $C(Q)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 16-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intersection of a sun $M$ in $C(Q)$ with a closed span $\Pi\subset C(Q) $ (in particular, with a closed ball) is shown to be a strict protosun, provided that the natural condition $M\cap\operatorname{int}\Pi\ne\varnothing$ is satisfied. This property is shown to characterize closed spans in $C(Q)$.
@article{VMUMM_2012_6_a2,
     author = {A. R. Alimov},
     title = {Bounded strict solar property of strict suns in the space $C(Q)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--19},
     year = {2012},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Bounded strict solar property of strict suns in the space $C(Q)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 16
EP  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/
LA  - ru
ID  - VMUMM_2012_6_a2
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Bounded strict solar property of strict suns in the space $C(Q)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 16-19
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/
%G ru
%F VMUMM_2012_6_a2
A. R. Alimov. Bounded strict solar property of strict suns in the space $C(Q)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 16-19. http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a2/

[1] Vlasov L.P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi matem. nauk, 28:6 (1973), 3–66 | MR

[2] Brosowski B., Wegmann R., “Charakterisierung bester Approximationen in normierten Vektorraumen”, J. Approx. Theory, 3:4 (1970), 369–397 | DOI | MR

[3] Yang W., Li Ch., Watson G.A., “Characterization and uniqueness of nonlinear uniform approximation”, Proc. Edinburgh Math. Soc., 40 (1997), 473–482 | DOI | MR

[4] Koscheev V.A., “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 19:2 (1976), 267–278 | MR

[5] Alimov A.R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Seriya matem., 69:4 (2005), 3–18 | DOI | MR

[6] Alimov A.R., “Sokhranenie approksimativnykh svoistv chebyshevskikh mnozhestv v $\ell^\infty(n)$ pri peresechenii s podmnozhestvami ${\mathbb R}^n$”, Izv. RAN. Seriya matem., 70:5 (2006), 3–12 | DOI | MR

[7] Alimov A.R., “Monotonnaya lineinaya svyaznost chebyshevskikh mnozhestv v prostranstve $C(Q)$”, Matem. sb., 197:9 (2006), 3–18 | DOI | MR

[8] Alimov A.R., “Sokhranenie approksimativnykh svoistv chebyshevskikh mnozhestv i solnts na ploskosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2008, no. 4, 46–49

[9] Vasileva A.A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Seriya matem., 68:4 (2004), 75–116 | DOI | MR

[10] Alimov A.R., “Geometricheskaya kharakterizatsiya strogikh solnts v $\ell^\infty(n)$”, Matem. zametki, 70:1 (2001), 3–11 | DOI | MR

[11] Alimov A.R., “Characterisations of Chebyshev sets in $c_0$”, J. Approx. Theory, 129 (2004), 217–229 | DOI | MR

[12] Alimov A.R., Protasov V.Yu., “Otdelimost vypuklykh mnozhestv ekstremalnymi giperploskostyami”, Fund. i prikl. matem., 2011/2012, no. 5, 3–12 | MR