Short exponential sums with a non-integer power of a natural number
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 51-55
Cet article a éte moissonné depuis la source Math-Net.Ru
An estimate for short exponential sums $$S_c(\alpha ;x,y)=\sum_{x-y<n\le x}e(\alpha [n^c])$$ is obtained for $y\ge x^{\frac{1}{2}}\ln^A x$, $x^{1-c}y^{-1}\ln^Ax\le|\alpha|\le 0,5$, $c>2$ and $\|c\|\ge\delta$ where $A$ is a fixed positive number and $\delta=\delta (x,c,A)=\left(2^{[c]+1}-1\right)(A+2,5)\cdot\frac{\ln\ln x}{\ln x}$.
@article{VMUMM_2012_6_a10,
author = {P. Z. Rakhmonov},
title = {Short exponential sums with a non-integer power of a natural number},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {51--55},
year = {2012},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a10/}
}
P. Z. Rakhmonov. Short exponential sums with a non-integer power of a natural number. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2012), pp. 51-55. http://geodesic.mathdoc.fr/item/VMUMM_2012_6_a10/
[1] Buriev K., Additivnye zadachi s prostymi chislami, Kand. dis., M., 1989
[2] Popov O.V., Arifmeticheskie prilozheniya otsenok summ G. Veilya ot mnogochlenov rastuschei stepeni, Kand. dis., M., 1995
[3] Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N., Lektsii po matematicheskomu analizu, Drofa, M., 2003
[4] Karatsuba A.A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983 | MR
[5] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1980 | MR