Variety of Jordan algebras $\operatorname{var}\bigl(UT_2(F)^{(+)}\bigr)$ has almost polynomial growth
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 49-52
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that in the case of ground field of characteristic zero the variety of Jordan algebras $\operatorname{var}\bigl(UT_2(F)^{(+)}\bigr)$ has the growth with exponent two and any its proper subvariety has a polynomial growth.
@article{VMUMM_2012_5_a9,
author = {A. V. Popov},
title = {Variety of {Jordan} algebras $\operatorname{var}\bigl(UT_2(F)^{(+)}\bigr)$ has almost polynomial growth},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {49--52},
year = {2012},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a9/}
}
TY - JOUR
AU - A. V. Popov
TI - Variety of Jordan algebras $\operatorname{var}\bigl(UT_2(F)^{(+)}\bigr)$ has almost polynomial growth
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2012
SP - 49
EP - 52
IS - 5
UR - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a9/
LA - ru
ID - VMUMM_2012_5_a9
ER -
A. V. Popov. Variety of Jordan algebras $\operatorname{var}\bigl(UT_2(F)^{(+)}\bigr)$ has almost polynomial growth. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 49-52. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a9/
[1] Giambruno A., Zaicev M.V., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR
[2] Mischenko S.P., Popov A.V., “Mnogoobrazie iordanovykh algebr, opredelyaemoe tozhdestvom $\left( {xy} \right)\left( {zt} \right) \equiv 0$, imeet pochti polinomialnyi rost”, Matem. zametki, 87:6 (2010), 877–884 | DOI
[3] Zhevlakov K.A., Slinko A.M., Shestakov I.P., Shirshov A.I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR
[4] Drensky V., “On the identities of the three-dimensional simple Jordan algebra”, Ann. de l'Univ. de Sofia, Fac. de Math. et Mecan. Livre 1: Math., 78 (1984), 53–67 | MR