Motion of a sphere colliding with a rough surface
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 35-39

Voir la notice de l'article provenant de la source Math-Net.Ru

Some problems of sphere's movement by inertia, such as the movement between two parallel planes, inside a sphere and inside a circular cylinder are considered. We assume that during the impact the condition of rolling without slipping is satisfied (a nonholonomic constraint): the tangent velocity of a contacting sphere's point is equal to zero. It is shown that in all cases the movement tends in a limit to a stable velocity mode: the angular sphere's velocity tends to a constant value and its center velocity becomes periodic for planes and conditionally periodic for the sphere and the cylinder. In some cases the coordinates specifying the sphere's position and orientation come to a stable mode.
@article{VMUMM_2012_5_a6,
     author = {T. F. Barbashova and L. S. Otradnova},
     title = {Motion of a sphere colliding with a rough surface},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/}
}
TY  - JOUR
AU  - T. F. Barbashova
AU  - L. S. Otradnova
TI  - Motion of a sphere colliding with a rough surface
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 35
EP  - 39
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/
LA  - ru
ID  - VMUMM_2012_5_a6
ER  - 
%0 Journal Article
%A T. F. Barbashova
%A L. S. Otradnova
%T Motion of a sphere colliding with a rough surface
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 35-39
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/
%G ru
%F VMUMM_2012_5_a6
T. F. Barbashova; L. S. Otradnova. Motion of a sphere colliding with a rough surface. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/