Motion of a sphere colliding with a rough surface
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 35-39
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Some problems of sphere's movement by inertia, such as the movement between two parallel planes, inside a sphere and inside a circular cylinder are considered. We assume that during the impact the condition of rolling without slipping is satisfied (a nonholonomic constraint): the tangent velocity of a contacting sphere's point is equal to zero. It is shown that in all cases the movement tends in a limit to a stable velocity mode: the angular sphere's velocity tends to a constant value and its center velocity becomes periodic for planes and conditionally periodic for the sphere and the cylinder. In some cases the coordinates specifying the sphere's position and orientation come to a stable mode.
			
            
            
            
          
        
      @article{VMUMM_2012_5_a6,
     author = {T. F. Barbashova and L. S. Otradnova},
     title = {Motion of a sphere colliding with a rough surface},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/}
}
                      
                      
                    TY - JOUR AU - T. F. Barbashova AU - L. S. Otradnova TI - Motion of a sphere colliding with a rough surface JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2012 SP - 35 EP - 39 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/ LA - ru ID - VMUMM_2012_5_a6 ER -
T. F. Barbashova; L. S. Otradnova. Motion of a sphere colliding with a rough surface. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a6/
