Description of singularities for system “billiard in an ellipse”
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 31-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A “billiard within an ellipse” is an integrable system appearing in the description of a point motion inside an ellipse with natural reflections at the boundary. This system is considered in the paper, the topological invariant of Liouville equivalence of this system is calculated, which is a Fomenko–Tsishang molecule, by the new method developed by the author.
@article{VMUMM_2012_5_a5,
     author = {V. V. Fokicheva},
     title = {Description of singularities for system {\textquotedblleft}billiard in an ellipse{\textquotedblright}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--34},
     year = {2012},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a5/}
}
TY  - JOUR
AU  - V. V. Fokicheva
TI  - Description of singularities for system “billiard in an ellipse”
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 31
EP  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a5/
LA  - ru
ID  - VMUMM_2012_5_a5
ER  - 
%0 Journal Article
%A V. V. Fokicheva
%T Description of singularities for system “billiard in an ellipse”
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 31-34
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a5/
%G ru
%F VMUMM_2012_5_a5
V. V. Fokicheva. Description of singularities for system “billiard in an ellipse”. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 31-34. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a5/

[1] Dragovic V., Radnovic M., Bifurcations of Liouville tori in elliptical billiards, arXiv: 0902.4233v2 | MR

[2] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[3] Kozlov V.V., Treschev D.V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | MR

[4] Bolsinov A.V., Fomenko A.T., “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR

[5] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[6] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, RKhD, Izhevsk, 1999 | MR

[7] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR, 52:2 (1988), 378–407

[8] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[9] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575

[10] Gutkin E., “Billiard dynamics: a survey with the emphasis on open problems”, Regular and Chaotic Dynamics, 8:1 (2003), 1–13 | DOI | MR