Almost primitive elements of free nonassociative (anty)commutative algebras of small rank
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 19-24
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed for free nonassociative commutative and anticommutative algebras of rank $1$ and $2$.
@article{VMUMM_2012_5_a3,
     author = {A. V. Klimakov},
     title = {Almost primitive elements of free nonassociative (anty)commutative algebras of small rank},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--24},
     year = {2012},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a3/}
}
TY  - JOUR
AU  - A. V. Klimakov
TI  - Almost primitive elements of free nonassociative (anty)commutative algebras of small rank
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 19
EP  - 24
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a3/
LA  - ru
ID  - VMUMM_2012_5_a3
ER  - 
%0 Journal Article
%A A. V. Klimakov
%T Almost primitive elements of free nonassociative (anty)commutative algebras of small rank
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 19-24
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a3/
%G ru
%F VMUMM_2012_5_a3
A. V. Klimakov. Almost primitive elements of free nonassociative (anty)commutative algebras of small rank. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 19-24. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a3/

[1] Kurosh A.G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Matem. sb., 20 (1947), 239–262 | MR

[2] Shirshov A.I., “Podalgebry svobodnykh kommutativnykh i antikommutativnykh algebr”, Matem. sb., 34 (1954), 81–88

[3] Mikhalev A.A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, Springer, N.Y., 2004 | MR

[4] Mikhalev A.A., Umirbaev U.U., Yu J.-T., “Automorphic orbits of elements of free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR

[5] Mikhalev A.A., Mikhalev A.V., Chepovskii A.A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fund. i prikl. matem., 13:5 (2007), 171–192

[6] Mikhalev A.A., Yu J.-T., “Primitive, almost primitive, test, and $\Delta$-primitive elements of free algebras with the Nielsen–Schreier property”, J. Algebra, 228 (2000), 603–623 | DOI | MR

[7] Klimakov A.V., Mikhalev A.A., “Pochti primitivnye elementy svobodnykh neassotsiativnykh algebr malykh rangov”, Fund. i prikl. matem., 17:1 (2012), 127–141 | MR