Generic planes conjecture
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 13-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for some special cases the set of all continuous mappings of an $n$-dimensional compactum in an $m$-dimensional Euclidean space such that the set of all $d$-dimensional planes having the cardinality of the preimage $\geq q$ has the dimension $\le qn-(q-d-1)(m-d)$, is dense.
@article{VMUMM_2012_5_a2,
     author = {S. A. Bogatyi},
     title = {Generic planes conjecture},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--19},
     publisher = {mathdoc},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a2/}
}
TY  - JOUR
AU  - S. A. Bogatyi
TI  - Generic planes conjecture
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 13
EP  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a2/
LA  - ru
ID  - VMUMM_2012_5_a2
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%T Generic planes conjecture
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 13-19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a2/
%G ru
%F VMUMM_2012_5_a2
S. A. Bogatyi. Generic planes conjecture. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 13-19. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a2/