Adequacy of a nonlinear theory of viscoelasticity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 65-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The specific properties of viscoelastic materials behavior carrying into the choice of nonlinear constitutive relations are discussed. The classification for these constitutive relations is given as well as the requirements that the practice produces to their adequacy are formulated. The nonlinear theory of viscoelasticity possessing all preferences in comparison with the theory where stresses are expressed in terms of strains by the integral operators of increasing multiplicity is proposed. An inverse structure of the operator constitutive relations is shown by a one-dimensional example.
@article{VMUMM_2012_5_a14,
     author = {B. E. Pobedrya},
     title = {Adequacy of a nonlinear theory of viscoelasticity},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--69},
     year = {2012},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a14/}
}
TY  - JOUR
AU  - B. E. Pobedrya
TI  - Adequacy of a nonlinear theory of viscoelasticity
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 65
EP  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a14/
LA  - ru
ID  - VMUMM_2012_5_a14
ER  - 
%0 Journal Article
%A B. E. Pobedrya
%T Adequacy of a nonlinear theory of viscoelasticity
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 65-69
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a14/
%G ru
%F VMUMM_2012_5_a14
B. E. Pobedrya. Adequacy of a nonlinear theory of viscoelasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 65-69. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a14/

[1] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR

[2] Adamov A.A., Matveenko V.P., Trufanov N.A., Shardakov I.N., Metody prikladnoi vyazkouprugosti, IMSS UrO RAN, Ekaterinburg, 2003

[3] Georgievskii D.V., Klimov D.M., Pobedrya B.E., “Osobennosti povedeniya vyazkouprugikh modelei”, Izv. RAN. Mekhan. tverdogo tela, 2004, no. 1, 119–157 | MR

[4] Pobedrya B.E., Mekhanika kompozitsionnykh materialov, Izd-vo MGU, M., 1984

[5] Pobedrya B.E., “Matematicheskaya teoriya nelineinoi vyazkouprugosti”, Uprugost i neuprugost, 3, Izd-vo MGU, M., 1973, 417–428

[6] Moskvitin V.V., Soprotivlenie vyazkouprugikh materialov, Nauka, M., 1970

[7] Ilyushin A.A., Plastichnost. Osnovy obschei matematicheskoi teorii, Izd-vo AN SSSR, M., 1963 | MR

[8] Samarin Yu.P., Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoistvami, Kuibyshev, 1979

[9] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Izd-vo MGU, M., 1995 | MR