Equivalent conditions of polynomial growth of a variety of Poisson algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 8-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present equivalent conditions of the polynomial codimension growth of a variety of Poisson algebras over a field of characteristic zero and show that there are only two varieties of Poisson algebras with almost polynomial growth.
@article{VMUMM_2012_5_a1,
     author = {S. M. Ratseev},
     title = {Equivalent conditions of polynomial growth of a variety of {Poisson} algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--13},
     year = {2012},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a1/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - Equivalent conditions of polynomial growth of a variety of Poisson algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 8
EP  - 13
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a1/
LA  - ru
ID  - VMUMM_2012_5_a1
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T Equivalent conditions of polynomial growth of a variety of Poisson algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 8-13
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a1/
%G ru
%F VMUMM_2012_5_a1
S. M. Ratseev. Equivalent conditions of polynomial growth of a variety of Poisson algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2012), pp. 8-13. http://geodesic.mathdoc.fr/item/VMUMM_2012_5_a1/

[1] Bakhturin Yu.A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[2] Mishchenko S.P., Petrogradsky V.M., Regev A., “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR

[3] Zelmanov E.I., “Ob engelevykh algebrakh Li”, Sib. matem. zhurn., 29:5 (1988), 112–117 | MR

[4] Ratseev S.M., “Rost v algebrakh Puassona”, Algebra i logika, 50:1 (2011), 68–88 | MR

[5] Kemer A.R., “Shpekhtovost T-idealov so stepennym rostom korazmernostei”, Sib. matem. zhurn., 19:1 (1978), 54–69 | MR