Uniform approximation by polynomials on compacta of special form
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 47-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A lower estimate of the least deviations is obtained and polynomials of the best uniform approximation are found for some functions given on compact sets of the complex plane containing full preimages $Q^{-1}(v_{j})$ of several points $v_{j}\in\mathbb{C}$ for some polynomial $Q(z)$ of a complex variable.
@article{VMUMM_2012_3_a9,
     author = {I. V. Beloshapka},
     title = {Uniform approximation by polynomials on compacta of special form},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--51},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a9/}
}
TY  - JOUR
AU  - I. V. Beloshapka
TI  - Uniform approximation by polynomials on compacta of special form
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 47
EP  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a9/
LA  - ru
ID  - VMUMM_2012_3_a9
ER  - 
%0 Journal Article
%A I. V. Beloshapka
%T Uniform approximation by polynomials on compacta of special form
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 47-51
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a9/
%G ru
%F VMUMM_2012_3_a9
I. V. Beloshapka. Uniform approximation by polynomials on compacta of special form. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 47-51. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a9/

[1] Kamo S.O., Borodin P.A., “Mnogochleny Chebysheva dlya mnozhestv Zhyulia”, Vestn. Mosk. un-ta. Matem. Mekhan., 1994, no. 5, 65–67

[2] Borodin P.A., “Ob odnom uslovii na mnogochlen, dostatochnom dlya minimalnosti ego normy na zadannom kompakte”, Vestn. Mosk. un-ta. Matem. Mekhan., 2006, no. 4, 14–18

[3] Pakovich F., “On polynomials sharing preimages of compact sets, and related questions”, Geom. and Funct. Anal., 18:1 (2007), 163–183 | DOI | MR

[4] Dzyadyk V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1997 | MR