Robustness of sign tests in autoregression
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 40-43
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Robustness of sign tests in autoregression against outliers is studied. The local scheme of observations contamination by additive isolated outliers with the intensity $O(n^{-1/2})$, $n$ is the size of observations, is considered.
@article{VMUMM_2012_3_a7,
     author = {M. V. Boldin},
     title = {Robustness of sign tests in autoregression},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--43},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a7/}
}
TY  - JOUR
AU  - M. V. Boldin
TI  - Robustness of sign tests in autoregression
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 40
EP  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a7/
LA  - ru
ID  - VMUMM_2012_3_a7
ER  - 
%0 Journal Article
%A M. V. Boldin
%T Robustness of sign tests in autoregression
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 40-43
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a7/
%G ru
%F VMUMM_2012_3_a7
M. V. Boldin. Robustness of sign tests in autoregression. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 40-43. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a7/

[1] Boldin M.V., Tyurin Yu.N., “On nonparametric sign procedures in autoregression models”, Math. Methods Statist., 3 (1994), 279–305 | MR

[2] Boldin M.V., Simonova G.I., Tyurin Yu.N., Sign-based methods in linear statistical models, Amer. Math. Soc., Providence, 1997 | MR

[3] Boldin M.V., Shtute V., “O znakovykh testakh v $ARMA$-modeli s vozmozhno beskonechnoi dispersiei oshibok”, Teor. veroyatn. i ee primen., 49 (2004), 436–460 | DOI

[4] Hallin M., Ingenbleek J.-Fr., Puri M.L., “Linear and quadratic rank tests for randomness against serial dependence”, J. Time Ser. Anal., 8 (1987), 409–424 | DOI | MR

[5] Hallin M., Puri M.L., “Optimal rank-based procedures for time series analysis: testing an ARMA model against other ARMA models”, Ann. Statist., 16 (1988), 402–432 | DOI | MR

[6] Hallin M., Puri M.L., “Time series analysis via rank order theory: signed-rank tests for ARMA models”, J. Multiv. Anal., 39 (1991), 1–29 | DOI | MR

[7] Hallin M., Puri M.L., “Aligned rank test for linear models with autocorrelated error terms”, J. Multiv. Anal., 50 (1994), 175–237 | DOI | MR

[8] Boldin M.V., “Local robustness of sign tests in $AR(1)$ against outliers”, Math. Methods Statist., 20 (2011), 1–14 | DOI | MR

[9] Martin R.D., Yohai V.J., “Influence functionals for time series”, Ann. Statist., 14 (1986), 781–818 | DOI | MR

[10] Rieder H., “Qualitative robustness of rank tests”, Ann. Statist., 10 (1982), 205–211 | DOI | MR

[11] Hampel F.R., “A general qualitative definition of robustness”, Ann. Math. Statist., 42 (1971), 1887–1896 | DOI | MR

[12] Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel W.A., Robust stastistics. The approach based on influence functions, Wiley, N.Y., 1985 | MR