Limit theorems for maxima of some dependent random sums
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 18-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A family of extrema having form
$$
  Y_{mn}=\max_{1\le i \le m}\sum_{j=1}^n X_{ij},\qquad m,n\ge1,
$$
is considered, here
the random variables $\{X_{ij}\}$, $i\ge1$, $j\ge1$, are dependent 
by columns (with identical $j$) and independent by rows (with different $j$). 
The asymptotics of $Y_{mn}$ for $m,n\to\infty$ is studied. 
Three particular cases are considered: a normal distribution, a 
Laplace distribution, and an $\alpha$-stable distribution.
			
            
            
            
          
        
      @article{VMUMM_2012_3_a3,
     author = {T. V. Kuznetsova},
     title = {Limit theorems for maxima of some dependent random sums},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--23},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a3/}
}
                      
                      
                    T. V. Kuznetsova. Limit theorems for maxima of some dependent random sums. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 18-23. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a3/
