Belyi pairs corresponding to dessins d'enfants of genus~$3$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 62-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we discuss a question arising in the dessins d'enfants theory: we are interested in finding the defining equations for the Belyi pair of a given dessin. Low genus ($g\le2$) cases are well-studied, there exist many examples of Belyi pairs of those genera and some effective methods have been developed. We present a method which allows to find Belyi pairs of self-dual genus $3$ dessins.
@article{VMUMM_2012_3_a13,
     author = {E. M. Epifanov},
     title = {Belyi pairs corresponding to dessins d'enfants of genus~$3$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--64},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a13/}
}
TY  - JOUR
AU  - E. M. Epifanov
TI  - Belyi pairs corresponding to dessins d'enfants of genus~$3$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 62
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a13/
LA  - ru
ID  - VMUMM_2012_3_a13
ER  - 
%0 Journal Article
%A E. M. Epifanov
%T Belyi pairs corresponding to dessins d'enfants of genus~$3$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 62-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a13/
%G ru
%F VMUMM_2012_3_a13
E. M. Epifanov. Belyi pairs corresponding to dessins d'enfants of genus~$3$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 62-64. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a13/