A power function of statistical tests dependent on elementary symmetric polynomials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 55-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Statistical tests not changing under an affine change of the coordinate system are considered in the multivariate analysis. In the case of a multivariate linear model and a model using the canonical correlation analysis, these tests are functions of eigenvalues of matrices following a Wishart distribution. In this paper we prove the monotonicity property of test power functions being functions of elementary symmetric polynomials of eigenvalues of a matrix following a non-central Wishart distribution.
@article{VMUMM_2012_3_a11,
     author = {P. A. Kashitsyn},
     title = {A power function of statistical tests dependent on elementary symmetric polynomials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--58},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a11/}
}
TY  - JOUR
AU  - P. A. Kashitsyn
TI  - A power function of statistical tests dependent on elementary symmetric polynomials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 55
EP  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a11/
LA  - ru
ID  - VMUMM_2012_3_a11
ER  - 
%0 Journal Article
%A P. A. Kashitsyn
%T A power function of statistical tests dependent on elementary symmetric polynomials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 55-58
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a11/
%G ru
%F VMUMM_2012_3_a11
P. A. Kashitsyn. A power function of statistical tests dependent on elementary symmetric polynomials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 55-58. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a11/

[1] Das Gupta S., Anderson T.W., Mudholkar G.S., “Monotonicity of the power functions of some tests of the multivariate linear hypothesis”, Ann. Math. Statist., 35 (1964), 200–205 | DOI | MR

[2] Anderson T.W., Das Gupta S., “A monotonicity property of the power functions of some tests of equality of two covariance matrices”, Ann. Math. Statist., 35 (1964), 1059–1063 | DOI | MR

[3] Perlman M.D., Olkin I., “Unbiasedness of invariant tests for MANOVA and other multivariate problems”, Ann. Math. Statist., 8 (1980), 1326–1341 | DOI | MR

[4] Groeneboom P., Truax D.R., “A monotonicity property of the power function of multivariate tests”, Indagationes Mathematicae, 11 (2000), 209–218 | DOI | MR

[5] Richards D.S.P., “Total positivity properties of generalized hypergeometric functions of matrix argument”, J. Statist. Phys., 116:114 (2004), 907–922 | DOI | MR

[6] Shaked M., Shanthikumar J.G., Stochastic Orders, Springer-Verlag, N.Y., 2006 | MR

[7] Muirhead R.J., Aspects of Multivariate Statistical Theory, Wiley, N.Y., 1982 | MR