Maximal branching processes with several types of particles
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 8-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper introduces multitype maximal branching processes and their generalizations. Some examples of their explicit construction are given. The ergodic theorem is proved for the case of two types of particles.
@article{VMUMM_2012_3_a1,
     author = {A. V. Lebedev},
     title = {Maximal branching processes with several types of particles},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--13},
     year = {2012},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a1/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Maximal branching processes with several types of particles
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 8
EP  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a1/
LA  - ru
ID  - VMUMM_2012_3_a1
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Maximal branching processes with several types of particles
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 8-13
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a1/
%G ru
%F VMUMM_2012_3_a1
A. V. Lebedev. Maximal branching processes with several types of particles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 8-13. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a1/

[1] Lamperti J., “Maximal branching processes and long-range percolation”, J. Appl. Probab., 7:1 (1970), 89–96 | DOI | MR

[2] Lebedev A.V., “Maksimalnye vetvyaschiesya protsessy s neotritsatelnymi znacheniyami”, Teor. veroyatn. i ee primen., 50:3 (2005), 564–570 | DOI

[3] Lebedev A.V., “Dvoinoi pokazatelnyi zakon dlya maksimalnykh vetvyaschikhsya protsessov”, Diskretnaya matematika, 14:3 (2002), 143–148 | DOI

[4] Lebedev A.V., “Obobschennye maksimalnye vetvyaschiesya protsessy na ogranichennykh mnozhestvakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2002, no. 6, 55–57

[5] Lebedev A.V., “Obobschennye maksimalnye vetvyaschiesya protsessy v sluchae stepennykh khvostov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2005, no. 2, 47–49

[6] Lebedev A.V., “Asimptotika khvostov statsionarnykh raspredelenii maksimalnykh vetvyaschikhsya protsessov”, Teor. veroyatn. i ee primen., 54:4 (2009), 515–520

[7] Lebedev A.V., “Maksimalnye vetvyaschiesya protsessy”, Sovremennye problemy matematiki i mekhaniki, 4, no. 1, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2009, 93–106 http://mech.math.msu.su/probab/svodny2.pdf

[8] Galambosh Ya.I., Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984 | MR

[9] McNeil A.J, Frey R., Embrechts P., Quantitative risk management, Princeton University Press, Princeton, 2005 | MR

[10] Nelsen R., An introduction to copulas, Lect. Notes in Statist., 139, Springer, N.Y., 1999 | DOI | MR

[11] Borovkov A.A., Ergodichnost i ustoichivost sluchainykh protsessov, URSS, M., 1999 | MR

[12] Lebedev A.V., “Predelnye teoremy dlya statsionarnykh raspredelenii maksimalnykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Sovremennye problemy matematiki i mekhaniki, 7, no. 1, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2011, 29–38 http://mech.math.msu.su/probab/cheb190.pdf

[13] Lebedev A.V., “Mnogotipnye maksimalnye vetvyaschiesya protsessy s kopulami ekstremalnykh znachenii”, Sovremennye problemy matematiki i mekhaniki, 7, no. 1, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2011, 39–49 http://mech.math.msu.su/probab/cheb190.pdf