Two-side estimates of the number of fixed points of a discrete logarithm
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower and upper bounds are obtained for an average number of solutions of the congruence $g^x\equiv x\pmod p$ in nonnegative integer numbers $x\le p-1$, where $g$ is a primitive root modulo $p$.
@article{VMUMM_2012_3_a0,
     author = {E. A. Grechnikov},
     title = {Two-side estimates of the number of fixed points of a discrete logarithm},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/}
}
TY  - JOUR
AU  - E. A. Grechnikov
TI  - Two-side estimates of the number of fixed points of a discrete logarithm
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 3
EP  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/
LA  - ru
ID  - VMUMM_2012_3_a0
ER  - 
%0 Journal Article
%A E. A. Grechnikov
%T Two-side estimates of the number of fixed points of a discrete logarithm
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 3-8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/
%G ru
%F VMUMM_2012_3_a0
E. A. Grechnikov. Two-side estimates of the number of fixed points of a discrete logarithm. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/