Two-side estimates of the number of fixed points of a discrete logarithm
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 3-8
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Lower and upper bounds are obtained for an average number of solutions of the congruence $g^x\equiv x\pmod p$ in nonnegative integer numbers $x\le p-1$, where $g$ is a primitive root modulo $p$.
			
            
            
            
          
        
      @article{VMUMM_2012_3_a0,
     author = {E. A. Grechnikov},
     title = {Two-side estimates of the number of fixed points of a discrete logarithm},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/}
}
                      
                      
                    TY - JOUR AU - E. A. Grechnikov TI - Two-side estimates of the number of fixed points of a discrete logarithm JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2012 SP - 3 EP - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/ LA - ru ID - VMUMM_2012_3_a0 ER -
E. A. Grechnikov. Two-side estimates of the number of fixed points of a discrete logarithm. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2012_3_a0/
