A method for synthesis of easily-testable circuits in some basis admitting single fault detection tests of constant length
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 24-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is constructively proved that any Boolean function of $n$ variables may be implemented in the basis of gates $\{ x\& y, x\oplus y, 1, {\bar x}(y\vee z)\vee x(y\sim z)\}$ by a testable combinational circuit admitting a fault detection test set whose power does not exceed 4 under arbitrary single inverse or constant (stuck-at) faults at outputs of gates.
@article{VMUMM_2012_2_a5,
     author = {D. S. Romanov},
     title = {A method for synthesis of easily-testable circuits in some basis admitting single fault detection tests of constant length},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--29},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a5/}
}
TY  - JOUR
AU  - D. S. Romanov
TI  - A method for synthesis of easily-testable circuits in some basis admitting single fault detection tests of constant length
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 24
EP  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a5/
LA  - ru
ID  - VMUMM_2012_2_a5
ER  - 
%0 Journal Article
%A D. S. Romanov
%T A method for synthesis of easily-testable circuits in some basis admitting single fault detection tests of constant length
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 24-29
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a5/
%G ru
%F VMUMM_2012_2_a5
D. S. Romanov. A method for synthesis of easily-testable circuits in some basis admitting single fault detection tests of constant length. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 24-29. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a5/

[1] Redkin N.P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992

[2] Reddy S.M., “Easily testable realization for logic functions”, IEEE Trans. Comput., 21:1 (1972), 124–141 | MR

[3] Redkin N.P., “O skhemakh, dopuskayuschikh korotkie testy”, Vestn. Mosk. un-ta. Matem. Mekhan., 1988, no. 2, 17–21

[4] Kovatsenko S.V., “Sintez legkotestiruemykh skhem v bazise Zhegalkina dlya inversnykh neispravnostei”, Vestn. Mosk. un-ta. Vychisl. matem. i kibern., 2000, no. 2, 45–47

[5] Redkin N.P., “Edinichnye proveryayuschie testy dlya skhem pri inversnykh neispravnostyakh elementov”, Matematicheskie voprosy kibernetiki, 12, Fizmatlit, M., 2003, 217–230

[6] Borodina Yu.V., “O sinteze legkotestiruemykh skhem v sluchae odnotipnykh konstantnykh neispravnostei na vykhodakh elementov”, Vestn. Mosk. un-ta. Vychisl. matem. i kibern., 2008, no. 1, 40–44 | MR

[7] Borodina Yu.V., “O skhemakh, dopuskayuschikh edinichnye testy dliny 1 pri konstantnykh neispravnostyakh na vykhodakh elementov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2008, no. 5, 49–52 | MR

[8] Borodina Yu.V., Borodin P.A., “Sintez legkotestiruemykh skhem v bazise Zhegalkina pri konstantnykh neispravnostyakh tipa “0” na vykhodakh elementov”, Diskretn. matem., 22:3 (2010), 127–133 | DOI | MR