Two-sided estimates for essential height in Shirshov's Height Theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 20-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is focused on two-sided estimates of the essential height in Shirshov's Height theorem. The notions of the selective height and strong $n$-divisibility directly related to the height and $n$-divisibility are introduced in the paper. We find lower and upper bounds for the selective height of non-strongly $n$-divided words over the words of length 2. These bounds differ by not more than twice for any $n$ and sufficiently large $l$. The case of words of length 3 is also studied. The case of words of length 2 can be generalized to the proof of a subexponential estimate in Shirshov's Height theorem. The proof uses the idea of Latyshev related to the use of Dilworth's theorem to the of non-$n$-divided words.
@article{VMUMM_2012_2_a4,
     author = {M. I. Kharitonov},
     title = {Two-sided estimates for essential height in {Shirshov's} {Height} {Theorem}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--24},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a4/}
}
TY  - JOUR
AU  - M. I. Kharitonov
TI  - Two-sided estimates for essential height in Shirshov's Height Theorem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 20
EP  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a4/
LA  - ru
ID  - VMUMM_2012_2_a4
ER  - 
%0 Journal Article
%A M. I. Kharitonov
%T Two-sided estimates for essential height in Shirshov's Height Theorem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 20-24
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a4/
%G ru
%F VMUMM_2012_2_a4
M. I. Kharitonov. Two-sided estimates for essential height in Shirshov's Height Theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 20-24. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a4/

[1] Shirshov A.I., “O nekotorykh neassotsiativnykh nil-koltsakh i algebraicheskikh algebrakh”, Matem. sb., 41:3 (1957), 381–394

[2] Shirshov A.I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Matem. sb., 43:2 (1957), 277–283

[3] Belov A.Ya., “Problemy bernsaidovskogo tipa, teoremy o vysote i o nezavisimosti”, Fund. i prikl. matem., 13:5 (2007), 19–79

[4] Belov A.Ya., Borisenko V.V., Latyshev V.N., “Monomialnye algebry”, Algebra-4, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Temat. obz., 26, VINITI, M., 2002, 35–214

[5] Belov A.Ya., Kharitonov M.I., “Subeksponentsialnye otsenki v teoreme Shirshova o vysote”, Matem. sb., 2012, arXiv: 1101.4909

[6] Kemer A.R., “Comments on the Shirshov's Height Theorem”, Selected papers of A. I. Shirshov, Birkhäuser Verlag AG, Basel, 2009, 41–48 | MR

[7] Procesi C., Rings with Polynomial Identities, Marcel Dekker, Inc., N.Y., 1973 | MR

[8] Kuzmin E.N., “O teoreme Nagaty–Khigmana”, Cb. trudov, posvyaschennyi 60-letiyu akad. Ilieva, Sofiya, 1975, 101–107

[9] Razmyslov Yu.P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR