Computable measures coprojection consistent with ordering relation is not necessarily computable
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 17-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example of two computable probabilistic measures is given on infinite binary sequences such that the two measures are comparable (there exists their coupling that forbids the pairs of symbols with the first member less than the second one), but all such couplings are incomputable.
@article{VMUMM_2012_2_a3,
     author = {M. A. Raskin},
     title = {Computable measures coprojection consistent with ordering relation is not necessarily computable},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--20},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a3/}
}
TY  - JOUR
AU  - M. A. Raskin
TI  - Computable measures coprojection consistent with ordering relation is not necessarily computable
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 17
EP  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a3/
LA  - ru
ID  - VMUMM_2012_2_a3
ER  - 
%0 Journal Article
%A M. A. Raskin
%T Computable measures coprojection consistent with ordering relation is not necessarily computable
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 17-20
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a3/
%G ru
%F VMUMM_2012_2_a3
M. A. Raskin. Computable measures coprojection consistent with ordering relation is not necessarily computable. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 17-20. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a3/

[1] Bienvenu L., Romashchenko A., Shen A., “Sparse sets”, Proc. Symp. Cellular Automata, Journées Automates Cellulaires (JAC 2008), MTsNMO, M., 2008, 18–28

[2] Makarychev K., Makarychev Yu., Romashchenko A., Vereshchagin N., “A new class of non-Shannon-type inequalities for entropies”, Communs Inform. Systems, 2:2 (2002), 147–166 | DOI | MR

[3] Zhang Z., Yeung R.W., “A non-Shannon-type conditional information inequality”, IEEE Trans. Inform. Theory, 43 (1997), 1982–1986 | DOI | MR

[4] Uspenskii V.A., Semenov A.L., Teoriya algoritmov: osnovnye otkrytiya i prilozheniya, Nauka, M., 1987 | MR

[5] Vereschagin N.K., Shen A., Vychislimye funktsii, 2-e izd., MTsNMO, M., 2008