Henstock type integral in compact zero-dimensional metric space and quasi-measures representations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 11-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of a Henstock type integral defined on a compact zero-dimensional metric space are studied. Theorems on integral representation of the so-called quasi-measures, i.e., linear functionals on the space of “polynomials” defined on the space of the above mentioned type are obtained.
@article{VMUMM_2012_2_a2,
     author = {V. A. Skvortsov and F. Tulone},
     title = {Henstock type integral in compact zero-dimensional metric space and quasi-measures representations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--17},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a2/}
}
TY  - JOUR
AU  - V. A. Skvortsov
AU  - F. Tulone
TI  - Henstock type integral in compact zero-dimensional metric space and quasi-measures representations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 11
EP  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a2/
LA  - ru
ID  - VMUMM_2012_2_a2
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%A F. Tulone
%T Henstock type integral in compact zero-dimensional metric space and quasi-measures representations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 11-17
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a2/
%G ru
%F VMUMM_2012_2_a2
V. A. Skvortsov; F. Tulone. Henstock type integral in compact zero-dimensional metric space and quasi-measures representations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a2/

[1] Skvortsov V.A., Tulone F., “Representation of quasi-measure by Henstock–Kurzweil type integral on a compact zero-dimensional metric space”, Georg. Math. J., 16:3 (2009), 575–582 | MR

[2] Skvortsov V.A., Tulone F., “Henstock–Kurzweil type integral in Fourier analysis on zero-dimensional group”, Tatra Mount. Math. Publ., 44 (2009), 41–51 | MR

[3] Ostaszewski K.M., Henstock integration in the plane, Mem. AMS, 63, no. 353, 1986 | MR

[4] Thomson B.S., “Derivation bases on the real line”, Real Anal. Exchange, 8:1 (1982/83), 67–207 ; 2, 278–442 | MR | MR

[5] Lee P.Y., Vyborny R., The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, 2000 | MR

[6] Lukashenko T.P., Skvortsov V.A., Solodov A.P., Obobschennye integraly, 2-e izd., Knizhnyi dom “Liberkom”, M., 2011

[7] Skvortsov V.A., Tulone F., “Ob integrale perronovskogo tipa na kompaktnoi nulmernoi abelevoi gruppe”, Vestn. Mosk. un-ta. Matem. Mekhan., 2008, no. 3, 37–42

[8] Grubb D.J., “Sets of uniqueness in compact 0-dimensional metric groups”, Trans. Amer. Math. Soc., 301 (1987), 239–249 | MR