Surface waves under constrained deformation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 59-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of the existence of surface waves in a range of speeds greater than the speed of transverse waves, but smaller than the speed of longitudinal waves is shown. It turns out that, in the boundary value problem for an elastic half-space in this speed range, there are the surface waves whose speed is constant and equal to $\sqrt{2}~b$, where $b$ is the speed of transverse waves. These waves as well as the Rayleigh surface waves have no dispersion. Their speed is determined only by the elastic constants and density of the medium. It is shown that the existence of such a speed is possibly related to the surface waves that appear as unloading waves under constrained deformation.
@article{VMUMM_2012_2_a14,
     author = {A. V. Zvyagin and G. A. Romashov},
     title = {Surface waves under constrained deformation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--62},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a14/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - G. A. Romashov
TI  - Surface waves under constrained deformation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 59
EP  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a14/
LA  - ru
ID  - VMUMM_2012_2_a14
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A G. A. Romashov
%T Surface waves under constrained deformation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 59-62
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a14/
%G ru
%F VMUMM_2012_2_a14
A. V. Zvyagin; G. A. Romashov. Surface waves under constrained deformation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 59-62. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a14/

[1] Galin L.A., Kontaktnye zadachi teorii uprugosti, Gostekhizdat, M., 1953 | MR

[2] Brener E.A., Malinin S.V., Marchenko V.I., “Fracture and friction: stick-slip motion”, Eur. Phys. J., E17:101 (2005), 101–113

[3] Hao S., Liu W.K., Klein P.A., Rosakis A.J., “Modeling and simulation of intersonic crack growth”, Int. J. Solids and Struct., 41:7 (2004), 1773–1799 | DOI

[4] Bouchon M., Bouin M.P., Karabulut H., Toksoz N., Dietrich M., Rosakis A.J., “How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes”, Geophys. Res. Let., 28 (2001), 2723–2726 | DOI

[5] Zvyagin A.V., “Sverkhzvukovoe dvizhenie tela v uprugoi srede pri nalichii treniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2007, no. 4, 52–61

[6] Zvyagin A.V., Romashov G.A., “Obrazovanie otryvnykh zon pri nalichii asimmetrii dvizheniya tela v uprugoi srede”, Izv. RAN. Mekhan. tverdogo tela, 2011, no. 3, 122–132

[7] Zvyagin A.V., Romashov G.A., “Aktualnye problemy mekhaniki sploshnoi sredy”, Tr. II Mezhdunar. konf., v. 2, EGUAS, Erevan, 2010, 99–102

[8] Rosakis A.J., “Intersonic shear cracks and fault ruptures”, Adv. Phys., 51:4 (2002), 1189–1257 | DOI

[9] Rosakis A.J., Samudrala O., Coker D., “Cracks faster than the shear wave speed”, Science, 284:5418 (1999), 1337–1340 | DOI