Robustness of GM-tests in autoregression against outliers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 48-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with properties of GM-estimators and GM-tests for linear hypotheses in AR(p)-processes when the observations contain outliers. In particular, we obtain the marginal distribution of test statistics, which allows us to prove the robustness of these GM-tests. The scheme of data contamination by additive single outliers with the intensity $O(n^{-1/2})$, where $n$ is the data level, is considered.
@article{VMUMM_2012_2_a10,
     author = {D. M. Esaulov},
     title = {Robustness of {GM-tests} in autoregression against outliers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--51},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a10/}
}
TY  - JOUR
AU  - D. M. Esaulov
TI  - Robustness of GM-tests in autoregression against outliers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 48
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a10/
LA  - ru
ID  - VMUMM_2012_2_a10
ER  - 
%0 Journal Article
%A D. M. Esaulov
%T Robustness of GM-tests in autoregression against outliers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 48-51
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a10/
%G ru
%F VMUMM_2012_2_a10
D. M. Esaulov. Robustness of GM-tests in autoregression against outliers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 48-51. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a10/

[1] Martin R.D., Yohai V.J., “Influence functionals for time series”, Ann. Statist., 14 (1986), 781–818 | DOI | MR

[2] Koul H.L., Weighted empiricals and linear models, IMS Lect. Notes. Monograph Series, 21, Hayward, CA, 1992 | MR

[3] Hampel F.R., “A general qualitive definition of robustness”, Ann. Statist., 42 (1971), 1887–1896 | DOI | MR

[4] Boente G., Fraiman R., Yohai V.J., “Qualitive robustness for stochastic processes”, Ann. Statist., 15 (1987), 1293–1312 | DOI | MR

[5] Reider H., “Qualitive robustness of rank tests”, Ann. Statist., 10 (1982), 205–211 | DOI | MR

[6] Hampel F.R., Ronchetti E.M., Rousseeuw J., Stahel W.A., Robust statistics. The approach based on influence functions, Wiley, N.Y., 1985 | MR

[7] Brockwell P.J., Davis R.A., Time series analysis: Theory and methods, Springer-Verlag, N.Y., 1991 | MR

[8] Boldin M.V., “Local robustness of sign tests in AR(1) against outliers”, Math. Methods Statist., 20 (2011), 2–22 | DOI | MR