The additivity criterion for finite metric spaces and minimal fillings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 8-11
Cet article a éte moissonné depuis la source Math-Net.Ru
A new additivity criterion of a finite metric space is obtained in the paper. The criterion is based on properties of minimal trees in Gromov's case.
@article{VMUMM_2012_2_a1,
author = {O. V. Rubleva},
title = {The additivity criterion for finite metric spaces and minimal fillings},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--11},
year = {2012},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a1/}
}
O. V. Rubleva. The additivity criterion for finite metric spaces and minimal fillings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 8-11. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a1/
[1] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012) | DOI
[2] Gromov M., “Filling Riemannian manifolds”, J. Diff. Geom., 18:1 (1983), 1–147 | DOI | MR
[3] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, Izd-vo In-ta kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR
[4] Deza M.M., Deza E., Encyclopedia of Distances, Springer-Verlag, Berlin–Heidelberg, 2009 | MR
[5] Zaretskii K.A., “Postroenie dereva po naboru rasstoyanii mezhdu visyachimi vershinami”, Uspekhi matem. nauk, 20:6 (1965), 90–92 | MR
[6] Simões-Pereira J.M.S., “A note on the tree realizability of a distance matrix”, J. Combin. Theory, 6 (1969), 303–310 | DOI | MR