A model of point configurations given by a semiparametric interaction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of a point process specified by a density with respect to the Poisson measure is developed. The proposed model is very flexible due to the choice of the interaction function in a semiparametric form. This allows us to simulate point patterns with structure properties of high diversity. Standard analytical properties of the process and its connections with known classes of point processes are discussed.
@article{VMUMM_2012_2_a0,
     author = {P. Ya. Grabarnik and V. V. Shcherbakov},
     title = {A model of point configurations given by a semiparametric interaction},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a0/}
}
TY  - JOUR
AU  - P. Ya. Grabarnik
AU  - V. V. Shcherbakov
TI  - A model of point configurations given by a semiparametric interaction
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 3
EP  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a0/
LA  - ru
ID  - VMUMM_2012_2_a0
ER  - 
%0 Journal Article
%A P. Ya. Grabarnik
%A V. V. Shcherbakov
%T A model of point configurations given by a semiparametric interaction
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 3-8
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a0/
%G ru
%F VMUMM_2012_2_a0
P. Ya. Grabarnik; V. V. Shcherbakov. A model of point configurations given by a semiparametric interaction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2012_2_a0/

[1] A. Baddeley, P. Gregori, J. Mateu, R. Stoica, D. Stoyan (eds.), Case Studies in Spatial Point Process Modeling, Lect. Notes Statist., 185, Springer, N.Y., 2006 | DOI | MR

[2] Grabarnik P., Särkkä A., “Interacting neighbour point processes: some models for clustering”, J. Statist. Comput. Simul., 68 (2001), 103–125 | DOI | MR

[3] Penrose M.D., Shcherbakov V., “Maximum likelihood estimation for cooperative sequential adsorption”, Adv. Appl. Probab., 41:4 (2009), 978–1001 | DOI | MR

[4] Penrose M.D., Shcherbakov V., “Asymptotic normality of maximum likelihood estimator for cooperative sequential adsorption”, Adv. Appl. Probab., 43:3 (2011), 636–648 | DOI | MR

[5] Shcherbakov V., “Limit theorems for random point measures generated by cooperative sequential adsorption”, J. Stat. Phys., 124:6 (2006), 1425–1441 | DOI | MR

[6] Kelly F.P., Ripley B.D., “On Strauss's model for clustering”, Biometrika, 63 (1976), 357–360 | DOI | MR

[7] Møller J., Waagepetersen R.P., Statistical Inference and Simulation for Spatial Point Processes, Chapman and Hall, N.Y., 2004 | MR

[8] Geyer C., “Likelihood inference for spatial point processes”, Stochastic geometry, likelihood and computation, eds. O. Barndorff-Nielsen, W.S. Kendall, M.N.M. van Lieshout, Chapman and Hall, Boca Raton, 1999, 79–140 | MR