Closed classes of the three-valued logic generated by systems containing symmetric functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 58-62
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Closed classes of three-valued logic functions whose generating systems include nonmonotone symmetric functions taking values in the set $\{0, 1\}$ are studied. It is shown that in some cases the problems of existence of a basis and of existence of a finite basis can be reduced to similar problem for reduced generating systems.
@article{VMUMM_2012_1_a9,
     author = {A. V. Mikhailovich},
     title = {Closed classes of the three-valued logic generated by systems containing symmetric functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--62},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a9/}
}
TY  - JOUR
AU  - A. V. Mikhailovich
TI  - Closed classes of the three-valued logic generated by systems containing symmetric functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 58
EP  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a9/
LA  - ru
ID  - VMUMM_2012_1_a9
ER  - 
%0 Journal Article
%A A. V. Mikhailovich
%T Closed classes of the three-valued logic generated by systems containing symmetric functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 58-62
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a9/
%G ru
%F VMUMM_2012_1_a9
A. V. Mikhailovich. Closed classes of the three-valued logic generated by systems containing symmetric functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 58-62. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a9/

[1] Post E.L., “Introduction to a general theory of elementary propositions”, Amer. J. Math., 43:3 (1921), 163–185 | DOI | MR

[2] Post E.L., The two-valued iterative systems of mathematical logic, Ann. Math. Stud., 5, 1941 | MR

[3] Yanov Yu.I., Muchnik A.A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46

[4] Mikhailovich A.V., “O zamknutykh klassakh trekhznachnoi logiki, porozhdennykh simmetricheskimi funktsiyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2008, no. 4, 54–57 | MR

[5] Mikhailovich A.V., “O klassakh funktsii trekhznachnoi logiki, porozhdennykh monotonnymi simmetricheskimi funktsiyami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 1, 33–37 | MR

[6] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2001 | MR

[7] Mikhailovich A.V., “O svoistvakh zamknutykh klassov funktsii trekhznachnoi logiki, porozhdennykh simmetricheskimi funktsiyami ”, Mat-ly X Mezhdunar. seminara “Diskretnaya matematika i ee prilozheniya” (Moskva, MGU, 1–6 fevralya 2010 g.), Izd-vo TsPI pri mekhaniko-matematicheskom fakultete MGU, M., 2010, 193–196