Integer lattices of the action variables for the generalized Lagrange case
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 54-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we construct lattices generated by integer-valued isolines of action variables of some integrable Hamiltonian systems with two degrees of freedom (generalized Lagrange case). The monodromy matrices for critical points of this system are calculated.
@article{VMUMM_2012_1_a8,
     author = {E. O. Kantonistova},
     title = {Integer lattices of the action variables for the generalized {Lagrange} case},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--58},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a8/}
}
TY  - JOUR
AU  - E. O. Kantonistova
TI  - Integer lattices of the action variables for the generalized Lagrange case
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 54
EP  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a8/
LA  - ru
ID  - VMUMM_2012_1_a8
ER  - 
%0 Journal Article
%A E. O. Kantonistova
%T Integer lattices of the action variables for the generalized Lagrange case
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 54-58
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a8/
%G ru
%F VMUMM_2012_1_a8
E. O. Kantonistova. Integer lattices of the action variables for the generalized Lagrange case. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a8/

[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[2] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR

[3] Mischenko A.S., Fomenko A.T., “Obobschennyi metod Liuvillya integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego pril., 12 (1978) | MR

[4] Bolsinov A.V., Matveev V.S., Fomenko A.T., “Dvumernye rimanovy metriki s integriruemym geodezicheskim potokom. Lokalnaya i globalnaya geometriya”, Matem. sb., 189:10 (1998), 5–32 | DOI

[5] Zhilinskii B., “Interpretation of quantum Hamiltonian monodromy in terms of lattice defects”, Acta Appl. Math., 87 (2005), 281–307 | DOI | MR

[6] Orel O.E., Takakhashi Sh., “Traektornaya klassifikatsiya integriruemykh zadach Lagranzha i Goryacheva–Chaplygina metodami kompyuternogo analiza”, Matem. sb., 187:1 (1996), 95–112 | DOI | MR