Hamiltonian systems under small nonautonomous perturbations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 47-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hamiltonian systems under weak nonautonomous and nonperiodic perturbations are considered. Sufficient conditions under which the first integrals of the unperturbed system vary slightly along the solution of the perturbed system are formulated. Some mechanical systems are considered as examples.
@article{VMUMM_2012_1_a7,
     author = {I. Yu. Polekhin},
     title = {Hamiltonian systems under small nonautonomous perturbations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {47--53},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a7/}
}
TY  - JOUR
AU  - I. Yu. Polekhin
TI  - Hamiltonian systems under small nonautonomous perturbations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 47
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a7/
LA  - ru
ID  - VMUMM_2012_1_a7
ER  - 
%0 Journal Article
%A I. Yu. Polekhin
%T Hamiltonian systems under small nonautonomous perturbations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 47-53
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a7/
%G ru
%F VMUMM_2012_1_a7
I. Yu. Polekhin. Hamiltonian systems under small nonautonomous perturbations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 47-53. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a7/

[1] Arnold V.I., “Dokazatelstvo teoremy A.N. Kolmogorova o sokhranenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, Uspekhi matem. nauk, 18:5(113) (1963), 13–40 | MR

[2] Arnold V.I., “O neustoichivosti dinamicheskoi sistemy so mnogimi stepenyami svobody”, Dokl. AN SSSR, 156:1 (1964), 9–12

[3] Treschev D.V., Gamiltonova mekhanika, Lektsionnye kursy NOTs, 4, MIAN, M., 2006 | DOI